Artículos sobre programación en el lenguaje MQL5

icon

Aprenda el lenguaje de programación de estrategias comerciales MQL5 leyendo numerosos artículos la mayor parte de los cuales han sido escritos por Ustedes - miembros de MQL5.community. Con el fin de buscar rápidamente la respuesta sobre una u otra cuestión de programación, todos los artículos están divididos en categorías: "Integración", "Probador", "Estrategias comerciales", etc.

Siga las nuevas publicaciones y participe en sus discusiones en el foro de MQL5.community!

Nuevo artículo
últimas | mejores
preview
Desarrollamos un asesor experto multidivisas (Parte 21): Preparación para un experimento importante y optimización del código

Desarrollamos un asesor experto multidivisas (Parte 21): Preparación para un experimento importante y optimización del código

Para continuar avanzando, sería bueno ver si podemos mejorar los resultados realizando periódicamente optimizaciones automáticas repetidas y generando un nuevo asesor experto. El escollo en muchos argumentos sobre el uso de la optimización de parámetros es la cuestión de cuánto tiempo pueden usarse los parámetros obtenidos para operar en el periodo futuro manteniendo los principales indicadores de rentabilidad y reducción en los niveles dados. ¿Es posible en general lograrlo?
preview
Trading con spreads en el mercado Fórex utilizando el factor de estacionalidad

Trading con spreads en el mercado Fórex utilizando el factor de estacionalidad

El en presente artículo analizaremos las posibilidades de formar y proporcionar datos sobre el uso del factor de estacionalidad al negociar con spreads en el mercado Fórex.
preview
Multibot en MetaTrader (Parte II): Plantilla dinámica mejorada

Multibot en MetaTrader (Parte II): Plantilla dinámica mejorada

Desarrollando el tema del artículo anterior sobre el multibot, hemos decidido crear una plantilla más flexible y funcional, que tenga grandes posibilidades, y que se pueda utilizar eficazmente en freelance, además de como base para desarrollar asesores de divisa y periodo múltiple con posibilidad de integración con soluciones externas.
preview
Ciclos y Forex

Ciclos y Forex

Los ciclos son de gran importancia en nuestras vidas. El día y la noche, las estaciones, los días de la semana y muchos otros ciclos de distinta naturaleza están presentes en la vida de cualquier persona. En este artículo, consideraremos los ciclos en los mercados financieros.
preview
Implementación de Breakeven en MQL5 (Parte 2): Breakeven basado en ATR y RRR

Implementación de Breakeven en MQL5 (Parte 2): Breakeven basado en ATR y RRR

En este artículo se finaliza la implementación del breakeven por atr y rr en MQL5, junto con el desarrollo desde cero de una clase que permite cambiar fácilmente el tipo de breakeven sin necesidad de reingresar los parámetros. Se realizan múltiples backtests para evaluar el rendimiento de cada tipo, analizando sus ventajas y desventajas en el contexto del trading algorítmico.
Trabajando con los precios en la biblioteca DoEasy (Parte 64): Profundidad del mercado, clases del objeto de instantánea y del objeto de serie de instantáneas del DOM
Trabajando con los precios en la biblioteca DoEasy (Parte 64): Profundidad del mercado, clases del objeto de instantánea y del objeto de serie de instantáneas del DOM

Trabajando con los precios en la biblioteca DoEasy (Parte 64): Profundidad del mercado, clases del objeto de instantánea y del objeto de serie de instantáneas del DOM

En este artículo, vamos a crear dos clases: la clase del objeto de instantánea del DOM y la clase del objeto de serie de instantáneas del DOM, además, simularemos la creación de la serie de datos del DOM.
preview
Desarrollando un cliente MQTT para MetaTrader 5: metodología de TDD

Desarrollando un cliente MQTT para MetaTrader 5: metodología de TDD

El presente artículo representa el primer intento de desarrollar un cliente MQTT nativo para MQL5. El MQTT es un protocolo de comunicación "publicación-suscripción". Es ligero, abierto, simple y está diseñado para implementarse con facilidad, lo cual permite su uso en muchas situaciones.
preview
Desarrollo de un sistema de repetición (Parte 31): Proyecto Expert Advisor — Clase C_Mouse (V)

Desarrollo de un sistema de repetición (Parte 31): Proyecto Expert Advisor — Clase C_Mouse (V)

Desarrollar una manera de poner un cronómetro, de modo que durante una repetición/simulación, éste pueda decirnos cuánto tiempo falta, puede parecer a primera vista una tarea simple y de rápida solución. Muchos simplemente intentarían adaptar y usar el mismo sistema que se utiliza cuando tenemos el servidor comercial a nuestro lado. Pero aquí reside un punto que muchos quizás no consideran al pensar en tal solución. Cuando estás haciendo una repetición, y esto para no hablar del hecho de la simulación, el reloj no funciona de la misma manera. Este tipo de cosa hace complejo construir tal sistema.
preview
Análisis de sentimientos y aprendizaje profundo para operar con EA y backtesting con Python

Análisis de sentimientos y aprendizaje profundo para operar con EA y backtesting con Python

En este artículo, presentaremos un análisis de sentimiento y los modelos ONNX con Python para ser utilizados en un asesor experto. Un script ejecuta un modelo ONNX entrenado a partir de TensorFlow para predicciones de aprendizaje profundo, mientras que otro obtiene titulares de noticias y cuantifica el sentimiento utilizando IA.
preview
Algoritmos de optimización de la población: Algoritmo electromagnético (ElectroMagnetism-like algorithm, ЕМ)

Algoritmos de optimización de la población: Algoritmo electromagnético (ElectroMagnetism-like algorithm, ЕМ)

El artículo describe los principios, métodos y posibilidades del uso del algoritmo electromagnético (EM) en diversos problemas de optimización. El algoritmo EM es una herramienta de optimización eficiente capaz de trabajar con grandes cantidades de datos y funciones multidimensionales.
preview
Escribimos el primer modelo de caja de cristal (Glass Box) en Python y MQL5

Escribimos el primer modelo de caja de cristal (Glass Box) en Python y MQL5

Los modelos de aprendizaje automático son difíciles de interpretar, y entender por qué los modelos no se ajustan a nuestras expectativas puede ayudarnos mucho a conseguir, en última instancia, el resultado deseado al utilizar técnicas tan avanzadas. Sin un conocimiento exhaustivo del funcionamiento interno del modelo, podría resultar difícil encontrar fallos que degraden el rendimiento. De este modo, podremos dedicar tiempo a crear funciones que no afecten a la calidad de la previsión. La conclusión es que, por muy bueno que sea un modelo, nos perderemos todas sus grandes ventajas por culpa de nuestros propios errores. Afortunadamente, existe una solución sofisticada y bien diseñada que permite ver con claridad lo que sucede bajo el capó del modelo.
preview
Trabajando con las series temporales en la biblioteca DoEasy (Parte 55): Clase de colección de indicadores

Trabajando con las series temporales en la biblioteca DoEasy (Parte 55): Clase de colección de indicadores

En este artículo, seguiremos desarrollando las clases de los objetos de indicador y sus colecciones. Crearemos la descripción para cada objeto de indicador y ajustaremos la clase de colección para un almacenamiento y obtención correctos de los objetos de indicador desde la lista de colección.
preview
Integración de modelos ML con el simulador de estrategias (Parte 3): Gestión de archivos CSV(II)

Integración de modelos ML con el simulador de estrategias (Parte 3): Gestión de archivos CSV(II)

Este texto es una guía completa sobre la creación de una clase en MQL5 para la gestión eficaz de archivos CSV. En él comprenderás cómo se lleva a cabo la implementación de métodos de apertura, escritura, lectura y conversión de datos y cómo se pueden emplear para guardar y acceder a la información. Además, trataremos las restricciones y los aspectos cruciales a la hora de utilizar una clase de este tipo. Este es un material valioso para aquellos que deseen aprender a manipular archivos CSV en MQL5.
preview
Marcado de datos en el análisis de series temporales (Parte 3): Ejemplo de uso del marcado de datos

Marcado de datos en el análisis de series temporales (Parte 3): Ejemplo de uso del marcado de datos

En esta serie de artículos, presentaremos varias técnicas de marcado de series temporales que pueden producir datos que se ajusten a la mayoría de los modelos de inteligencia artificial (IA). El marcado dirigido de datos puede hacer que un modelo de IA entrenado resulte más relevante para las metas y objetivos del usuario, mejorando la precisión del modelo y ayudando a este a dar un salto de calidad.
preview
Redes neuronales: así de sencillo (Parte 58): Transformador de decisión (Decision Transformer-DT)

Redes neuronales: así de sencillo (Parte 58): Transformador de decisión (Decision Transformer-DT)

Continuamos nuestro análisis de los métodos de aprendizaje por refuerzo. Y en el presente artículo, presentaremos un algoritmo ligeramente distinto que considera la política del Agente en un paradigma de construcción de secuencias de acciones.
preview
Estimamos la rentabilidad futura usando intervalos de confianza

Estimamos la rentabilidad futura usando intervalos de confianza

En este artículo, nos adentraremos en la aplicación de técnicas de bootstrapping como forma de evaluar la rentabilidad futura de una estrategia automatizada.
preview
Desarrollo y prueba de sistemas comerciales basados en el canal de Keltner

Desarrollo y prueba de sistemas comerciales basados en el canal de Keltner

En este artículo examinaremos los sistemas comerciales que utilizan un concepto muy importante de los mercados financieros: la volatilidad. Asimismo, estudiaremos un sistema comercial basado en el Canal de Keltner, incluyendo su implementación en código y sus pruebas con varios activos.
preview
Creación de un EA limitador de reducción diaria en MQL5

Creación de un EA limitador de reducción diaria en MQL5

El artículo analiza, desde una perspectiva detallada, cómo implementar la creación de un Asesor Experto (EA) basado en el algoritmo comercial. Esto ayuda a automatizar el sistema en MQL5 y tomar el control de la reducción diaria.
preview
Redes neuronales: así de sencillo (Parte 87): Segmentación de series temporales

Redes neuronales: así de sencillo (Parte 87): Segmentación de series temporales

La previsión juega un papel esencial en el análisis de series temporales. En este nuevo artículo, hablaremos de las ventajas de la segmentación de series temporales.
preview
Estructuras en MQL5 y métodos para imprimir sus datos

Estructuras en MQL5 y métodos para imprimir sus datos

En este artículo veremos las estructuras MqlDateTime, MqlTick, MqlRates, MqlBookInfo y los métodos para imprimir datos desde estas estructuras. Para imprimir todos los campos de una estructura, existe la función estándar ArrayPrint(), que muestra en un cómodo formato tabular los datos contenidos en un array con el tipo de estructura que se está procesando.
preview
Trabajamos con modelos ONNX en formato float16 y float8

Trabajamos con modelos ONNX en formato float16 y float8

Los formatos de datos usados para representar modelos de aprendizaje automático desempeñan un papel clave en su eficacia. En los últimos años, se han desarrollado varios tipos de datos nuevos específicamente para trabajar con modelos de aprendizaje profundo. En este artículo nos centraremos en dos nuevos formatos de datos que se han generalizado en los modelos modernos.
preview
Teoría de categorías en MQL5 (Parte 13): Eventos del calendario con esquemas de bases de datos

Teoría de categorías en MQL5 (Parte 13): Eventos del calendario con esquemas de bases de datos

El artículo analiza cómo se pueden incluir esquemas de bases de datos para la clasificación en MQL5. Vamos a repasar brevemente cómo los conceptos de esquema de base de datos pueden combinarse con la teoría de categorías para identificar información textual (cadenas) relevante para el comercio. La atención se centrará en los eventos del calendario.
preview
Desarrollo de un sistema de repetición (Parte 41): Inicio de la segunda fase (II)

Desarrollo de un sistema de repetición (Parte 41): Inicio de la segunda fase (II)

Si hasta ahora todo te ha parecido correcto, significa que no estás pensando realmente a largo plazo. Donde empiezas a desarrollar aplicaciones y, con el tiempo, ya no necesitas programar nuevas aplicaciones. Solo tienes que conseguir que trabajen juntos. Veamos cómo terminar de montar el indicador del ratón.
preview
Algoritmos de optimización de la población: Búsqueda por difusión estocástica (Stochastic Diffusion Search, SDS)

Algoritmos de optimización de la población: Búsqueda por difusión estocástica (Stochastic Diffusion Search, SDS)

En este artículo veremos la búsqueda por difusión estocástica, o SDS, que es un algoritmo de optimización muy potente y eficiente basado en los principios del paseo aleatorio. El algoritmo puede encontrar soluciones óptimas en espacios multidimensionales complejos, con una alta tasa de convergencia y la capacidad de evitar extremos locales.
preview
Algoritmos de optimización de la población: Algoritmo de recocido isotrópico simulado (Simulated Isotropic Annealing, SIA). Parte II

Algoritmos de optimización de la población: Algoritmo de recocido isotrópico simulado (Simulated Isotropic Annealing, SIA). Parte II

En la primera parte del artículo, hablamos del conocido y popular algoritmo del recocido simulado, analizamos sus ventajas y describimos detalladamente sus desventajas. La segunda parte del artículo se dedicará a la transformación cardinal del algoritmo y su renacimiento en un nuevo algoritmo de optimización, el "recocido isotrópico simulado, SIA".
preview
Filtrado y extracción de características en el dominio de la frecuencia

Filtrado y extracción de características en el dominio de la frecuencia

En este artículo, analizaremos la aplicación de filtros digitales a series temporales representadas en el dominio de la frecuencia con el fin de extraer características únicas que puedan resultar útiles para los modelos de predicción.
preview
Variables y tipos de datos extendidos en MQL5

Variables y tipos de datos extendidos en MQL5

Las variables y los tipos de datos son temas muy importantes no solo en la programación MQL5, sino también en cualquier lenguaje de programación. Las variables y los tipos de datos de MQL5 pueden dividirse en simples y extendidos. Aquí veremos las variables y los tipos de datos extendidos. Ya analizamos los sencillos en un artículo anterior.
preview
Experimentos con redes neuronales (Parte 4): Patrones

Experimentos con redes neuronales (Parte 4): Patrones

Las redes neuronales lo son todo. Vamos a comprobar en la práctica si esto es así. MetaTrader 5 como herramienta autosuficiente para el uso de redes neuronales en el trading. Una explicación sencilla.
preview
Cómo desarrollar un agente de aprendizaje por refuerzo en MQL5 con Integración RestAPI (Parte 1): Como usar RestAPIs en MQL5

Cómo desarrollar un agente de aprendizaje por refuerzo en MQL5 con Integración RestAPI (Parte 1): Como usar RestAPIs en MQL5

Este artículo aborda la importancia de las APIs (application programming interface) en la comunicación entre diferentes aplicaciones y sistemas de software. En él, se destaca el papel de las API a la hora de simplificar la interacción entre aplicaciones, ya que les permiten compartir datos y funcionalidades de forma eficiente.
preview
La teoría del caos en el trading (Parte 2): Continuamos la inmersión

La teoría del caos en el trading (Parte 2): Continuamos la inmersión

Continuamos nuestra inmersión en la teoría del caos en los mercados financieros: hoy analizaremos su aplicabilidad al análisis de divisas y otros activos.
preview
Estudiamos el indicador de perfil de mercado Market Profile: ¿Qué es y cómo se estructura?

Estudiamos el indicador de perfil de mercado Market Profile: ¿Qué es y cómo se estructura?

Hoy nos familiarizaremos con el "Perfil de mercado". Además, averiguaremos qué hay detrás de este nombre, trataremos de entender los principios de trabajo con el Perfil y analizaremos su versión presentada en el terminal bajo el nombre MarketProfile.
preview
Reimaginando las estrategias clásicas en MQL5 (Parte 12): Estrategia de ruptura en EURUSD

Reimaginando las estrategias clásicas en MQL5 (Parte 12): Estrategia de ruptura en EURUSD

Únase a nosotros hoy mismo y póngase a prueba para crear una estrategia de trading rentable en MQL5. Seleccionamos el par EURUSD e intentamos operar con rupturas de precios en el marco temporal horario. Nuestro sistema tenía dificultades para distinguir entre falsas rupturas y el inicio de tendencias reales. Hemos equipado nuestro sistema con filtros destinados a minimizar nuestras pérdidas y aumentar nuestras ganancias. Al final, logramos que nuestro sistema fuera rentable y menos propenso a falsas rupturas.
preview
DoEasy. Elementos de control (Parte 13): Optimizando la interacción de los objetos WinForms con el ratón. Comenzamos el desarrollo del objeto WinForms TabControl

DoEasy. Elementos de control (Parte 13): Optimizando la interacción de los objetos WinForms con el ratón. Comenzamos el desarrollo del objeto WinForms TabControl

En el presente artículo, corregiremos y optimizaremos el procesamiento de la apariencia de los objetos WinForms después de mover el cursor del ratón lejos del objeto y comenzaremos a desarrollar el objeto TabControl WinForms.
preview
Validación cruzada y fundamentos de la inferencia causal en modelos CatBoost, exportación a formato ONNX

Validación cruzada y fundamentos de la inferencia causal en modelos CatBoost, exportación a formato ONNX

En este artículo veremos un método de autor para crear bots utilizando el aprendizaje automático.
preview
Características del Wizard MQL5 que debe conocer (Parte 08): Perceptrones

Características del Wizard MQL5 que debe conocer (Parte 08): Perceptrones

Los perceptrones, o redes con una sola capa oculta, pueden ser una buena opción para quienes estén familiarizados con los fundamentos del comercio automatizado y quieran sumergirse en las redes neuronales. Paso a paso veremos como se pueden implementar en el ensamblado de clases de señales que forma parte de las clases del Wizard MQL5 para asesores expertos.
preview
Redes neuronales: así de sencillo (Parte 36): Modelos relacionales de aprendizaje por refuerzo (Relational Reinforcement Learning)

Redes neuronales: así de sencillo (Parte 36): Modelos relacionales de aprendizaje por refuerzo (Relational Reinforcement Learning)

En los modelos de aprendizaje por refuerzo analizados anteriormente, usamos varias opciones de redes convolucionales que pueden identificar varios objetos en los datos originales. La principal ventaja de las redes convolucionales es su capacidad de identificar objetos independientemente de la ubicación de estos. Al mismo tiempo, las redes convolucionales no siempre son capaces de hacer frente a diversas deformaciones de los objetos y al ruido. Pero estos problemas pueden resolverse usando el modelo relacional.
preview
Ejemplo de toma de beneficios optimizada automáticamente y parámetros de indicadores con SMA y EMA

Ejemplo de toma de beneficios optimizada automáticamente y parámetros de indicadores con SMA y EMA

Este artículo presenta un asesor experto sofisticado para el trading de divisas, que combina el aprendizaje automático con el análisis técnico. Se centra en la negociación de acciones de Apple, presentando optimización adaptativa, gestión de riesgos y múltiples estrategias. Las pruebas retrospectivas muestran resultados prometedores con una alta rentabilidad, pero también caídas significativas, lo que indica potencial para un mayor refinamiento.
preview
Marcado de datos en el análisis de series temporales (Parte 5): Aplicación y comprobación de asesores usando Socket

Marcado de datos en el análisis de series temporales (Parte 5): Aplicación y comprobación de asesores usando Socket

En esta serie de artículos, presentaremos varias técnicas de marcado de series temporales que pueden producir datos que se ajusten a la mayoría de los modelos de inteligencia artificial (IA). El marcado dirigido de datos puede hacer que un modelo de IA entrenado resulte más relevante para las metas y objetivos del usuario, mejorando la precisión del modelo y ayudando a este a dar un salto de calidad.
preview
Teoría de categorías en MQL5 (Parte 7): Dominios múltiples, relativos e indexados

Teoría de categorías en MQL5 (Parte 7): Dominios múltiples, relativos e indexados

La teoría de categorías es un apartado diverso y en expansión de las matemáticas, que solo recientemente ha comenzado a ser trabajado por la comunidad MQL5. Esta serie de artículos tiene por objetivo repasar algunos de sus conceptos para crear una biblioteca abierta y seguir usando este maravilloso apartado en la creación de estrategias comerciales.
preview
Redes neuronales en el trading: Modelos del espacio de estados

Redes neuronales en el trading: Modelos del espacio de estados

Una gran cantidad de los modelos que hemos revisado hasta ahora se basan en la arquitectura del Transformer. No obstante, pueden resultar ineficientes al trabajar con secuencias largas. En este artículo le propongo familiarizarse con una rama alternativa de pronóstico de series temporales basada en modelos del espacio de estados.