Artikel über das Programmieren in MQL5

icon

Lernen Sie die Sprache von Handelsstrategien MQL5 nach den hier veröffentlichten Artikeln, die meisten von denen Sie - die Mitglieder der Community - geschrieben haben. Alle Artikel sind in drei Kategorien aufgeteilt, damit man eine Antwort auf unterschiedliche Fragen des Programmierens schnell finden könnte: "Integration", "Tester", "Handelsstrategien" und vieles mehr.

Verfolgen Sie neue Veröffentlichungen und diskutieren Sie über diese im Forum!

Neuer Artikel
letzte | beste
preview
Neuronale Netze leicht gemacht (Teil 26): Reinforcement-Learning

Neuronale Netze leicht gemacht (Teil 26): Reinforcement-Learning

Wir untersuchen weiterhin Methoden des Reinforcement-Learnings. Mit diesem Artikel beginnen wir ein weiteres großes Thema, das Reinforcement-Learning. Dieser Ansatz ermöglicht es den Modellen, bestimmte Strategien zur Lösung der Probleme zu entwickeln. Es ist zu erwarten, dass diese Eigenschaft des Reinforcement-Learnings (Lernen durch Verstärkung) neue Horizonte für die Entwicklung von Handelsstrategien eröffnen wird.
preview
Neuronale Netze leicht gemacht (Teil 24): Verbesserung des Instruments für Transfer Learning

Neuronale Netze leicht gemacht (Teil 24): Verbesserung des Instruments für Transfer Learning

Im vorigen Artikel haben wir ein Tool zum Erstellen und Bearbeiten der Architektur neuronaler Netze entwickelt. Heute werden wir die Arbeit an diesem Instrument fortsetzen. Wir werden versuchen, sie nutzerfreundlicher zu gestalten. Dies mag ein Schritt weg von unserem Thema sein. Aber ist es nicht so, dass ein gut organisierter Arbeitsplatz eine wichtige Rolle bei der Erreichung dieses Ziels spielt?
Einen technischen Indikator selber machen
Einen technischen Indikator selber machen

Einen technischen Indikator selber machen

In diesem Artikel gehe ich auf die Algorithmen ein, mit denen Sie Ihren eigenen technischen Indikator erstellen können. Sie werden lernen, wie man mit sehr einfachen Ausgangsannahmen ziemlich komplexe und interessante Ergebnisse erzielen kann.
Marktmathematik: Gewinn, Verlust und Kosten
Marktmathematik: Gewinn, Verlust und Kosten

Marktmathematik: Gewinn, Verlust und Kosten

In diesem Artikel zeige ich Ihnen, wie Sie den Gesamtgewinn oder -verlust eines Handels einschließlich Provision und Swap berechnen können. Ich werde das genaueste mathematische Modell zur Verfügung stellen und es verwenden, um den Code zu schreiben und ihn mit der Norm zu vergleichen. Außerdem werde ich versuchen, in die Hauptfunktion von MQL5 zur Berechnung des Gewinns einzudringen und alle erforderlichen Werte aus der Spezifikation zu ermitteln.
preview
Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 24): Herstellen eines robusten Systems (I)

Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 24): Herstellen eines robusten Systems (I)

In diesem Artikel werden wir das System zuverlässiger machen, um eine robuste und sichere Nutzung zu gewährleisten. Eine der Möglichkeiten, die gewünschte Robustheit zu erreichen, besteht darin, den Code so oft wie möglich wiederzuverwenden, damit er ständig in verschiedenen Fällen getestet wird. Aber das ist nur eine der Möglichkeiten. Eine andere Möglichkeit ist die Verwendung von OOP.
Algorithmen zur Populationsoptimierung
Algorithmen zur Populationsoptimierung

Algorithmen zur Populationsoptimierung

Dies ist ein einführender Artikel über die Klassifizierung von Optimierungsalgorithmen (OA). In dem Artikel wird versucht, einen Prüfstand (eine Reihe von Funktionen) zu erstellen, der zum Vergleich von OAs und vielleicht zur Ermittlung des universellsten Algorithmus unter allen bekannten Algorithmen verwendet werden soll.
preview
Risiko- und Kapitalmanagement durch Expert Advisor

Risiko- und Kapitalmanagement durch Expert Advisor

In diesem Artikel geht es darum, was Sie in einem Backtest-Bericht nicht sehen können, was Sie erwarten sollten, wenn Sie automatisierte Handelssoftware verwenden, wie Sie Ihr Geld verwalten, wenn Sie Expert Advisors verwenden, und wie Sie einen erheblichen Verlust ausgleichen können, um in der Handelsaktivität zu bleiben, wenn Sie automatisierte Verfahren verwenden.
Der Indikator CCI: Drei Transformationsschritte
Der Indikator CCI: Drei Transformationsschritte

Der Indikator CCI: Drei Transformationsschritte

In diesem Artikel werde ich zusätzliche Änderungen am CCI vornehmen, die die eigentliche Logik dieses Indikators betreffen. Außerdem können wir sie im Hauptfenster des Charts sehen.
preview
Neuronale Netze leicht gemacht (Teil 21): Variierter Autoencoder (VAE)

Neuronale Netze leicht gemacht (Teil 21): Variierter Autoencoder (VAE)

Im letzten Artikel haben wir uns mit dem Algorithmus des Autoencoders vertraut gemacht. Wie jeder andere Algorithmus hat auch dieser seine Vor- und Nachteile. In seiner ursprünglichen Implementierung wird der Autoencoder verwendet, um die Objekte so weit wie möglich von der Trainingsstichprobe zu trennen. Dieses Mal werden wir darüber sprechen, wie man mit einigen ihrer Nachteile umgehen kann.
preview
Matrix- und Vektoroperationen in MQL5

Matrix- und Vektoroperationen in MQL5

Matrizen und Vektoren wurden in MQL5 für effiziente Operationen mit mathematischen Berechnungen eingeführt. Die neuen Typen bieten integrierte Methoden zur Erstellung von prägnantem und verständlichem Code, der der mathematischen Notation nahe kommt. Arrays bieten umfangreiche Möglichkeiten, aber es gibt viele Fälle, in denen Matrizen viel effizienter sind.
preview
Techniken des MQL5-Assistenten, die Sie kennen sollten (Teil 03): Shannonsche Entropie

Techniken des MQL5-Assistenten, die Sie kennen sollten (Teil 03): Shannonsche Entropie

Der Händler von heute ist ein Philomath, der fast immer (entweder bewusst oder unbewusst...) nach neuen Ideen sucht, sie ausprobiert, sich entscheidet, sie zu modifizieren oder zu verwerfen; ein explorativer Prozess, der einiges an Sorgfalt kosten sollte. Diese Artikelserie wird vorschlagen, dass der MQL5-Assistent eine Hauptstütze für Händler sein sollte.
preview
Neuronale Netze leicht gemacht (Teil 20): Autoencoder

Neuronale Netze leicht gemacht (Teil 20): Autoencoder

Wir untersuchen weiterhin Modelle und Algorithmen für unüberwachtes Lernen. Einige Leser haben vielleicht Fragen zur Relevanz der jüngsten Veröffentlichungen zum Thema neuronale Netze. In diesem neuen Artikel befassen wir uns wieder mit neuronalen Netzen.
preview
Neuronale Netze leicht gemacht (Teil 19): Assoziationsregeln mit MQL5

Neuronale Netze leicht gemacht (Teil 19): Assoziationsregeln mit MQL5

Wir fahren mit der Besprechung von Assoziationsregeln fort. Im vorigen Artikel haben wir den theoretischen Aspekt dieser Art von Problemen erörtert. In diesem Artikel werde ich die Implementierung der FP Growth-Methode mit MQL5 zeigen. Außerdem werden wir die implementierte Lösung anhand realer Daten testen.
preview
Lernen Sie, wie man ein Handelssystem mit dem VIDYA entwickelt

Lernen Sie, wie man ein Handelssystem mit dem VIDYA entwickelt

Willkommen zu einem neuen Artikel aus unserer Serie über das Lernen, wie man ein Handelssystem durch die beliebtesten technischen Indikatoren zu entwerfen, in diesem Artikel werden wir über ein neues technisches Werkzeug lernen und lernen, wie man ein Handelssystem durch Variable Index Dynamic Average (VIDYA) zu entwerfen.
preview
Neuronale Netze leicht gemacht (Teil 18): Assoziationsregeln

Neuronale Netze leicht gemacht (Teil 18): Assoziationsregeln

Als Fortsetzung dieser Artikelserie betrachten wir eine andere Art von Problemen innerhalb der Methoden des unüberwachten Lernens: die Ermittlung von Assoziationsregeln. Dieser Problemtyp wurde zuerst im Einzelhandel, insbesondere in Supermärkten, zur Analyse von Warenkörben eingesetzt. In diesem Artikel werden wir über die Anwendbarkeit solcher Algorithmen im Handel sprechen.