Статьи по программированию и использованию торговых роботов на языке MQL5

icon

Эксперты, созданные для платформы MetaTrader, выполняют самые разнообразные функции, задуманные их разработчиками. Торговые роботы могут отслеживать множество финансовых инструментов 24 часа в сутки, копировать сделки, создавать и отсылать отчеты, анализировать новости и даже предоставлять трейдеру собственный графический интерфейс, разработанный по его заказу.

В статьях предлагаются приемы программирования, математические идеи по обработке данных, советы по созданию и заказу торговых роботов.

Новая статья
последние | лучшие
preview
Трейдинг с экономическим календарем MQL5 (Часть 1): Освоение функций экономического календаря MQL5

Трейдинг с экономическим календарем MQL5 (Часть 1): Освоение функций экономического календаря MQL5

В этой статье мы рассмотрим, как использовать экономический календарь MQL5 для торговли, сначала разобравшись с его основными функциями. Затем мы реализуем ключевые функции экономического календаря в MQL5 для извлечения необходимых новостей для принятия торговых решений. Наконец, мы посмотрим, как использовать эту информацию для эффективного совершенствования торговых стратегий.
preview
Разрабатываем мультивалютный советник (Часть 22): Начало перехода на горячую замену настроек

Разрабатываем мультивалютный советник (Часть 22): Начало перехода на горячую замену настроек

Если мы взялись за автоматизацию проведения периодической оптимизации, то надо позаботиться и об автоматическом обновлении настроек советников, которые уже работают на торговом счёте. Также это должно позволять запускать советник в тестере стратегий и менять его настройки в рамках одного прохода.
preview
Универсальная формула оптимизации (GOF) при реализации режима Custom Max с ограничениями

Универсальная формула оптимизации (GOF) при реализации режима Custom Max с ограничениями

В статье представлен способ реализации задач оптимизации с несколькими целями и ограничениями при выборе режима Custom Max в настройках терминала MetaTrader 5. Например, задача оптимизации может быть следующей: максимизировать фактор прибыли, чистую прибыль и фактор восстановления таким образом, чтобы просадка была менее 10%, количество последовательных убытков было менее 5, а количество сделок в неделю было более 5.
preview
Теория категорий в MQL5 (Часть 22): Другой взгляд на скользящие средние

Теория категорий в MQL5 (Часть 22): Другой взгляд на скользящие средние

В этой статье мы попытаемся упростить описание концепций, рассматриваемых в этой серии, остановившись только на одном индикаторе - наиболее распространенном и, вероятно, самом легком для понимания. Речь идет о скользящей средней. Также мы рассмотрим значение и возможные применения вертикальных естественных преобразований.
preview
Создаем интерактивную MQL5-панель с использованием класса Controls (Часть 1): Настройка панели

Создаем интерактивную MQL5-панель с использованием класса Controls (Часть 1): Настройка панели

В этой статье мы создадим интерактивную торговую панель с использованием класса Controls в MQL5, предназначенную для оптимизации торговых операций. Панель содержит заголовок, кнопки навигации для торговли, закрытия и информации, а также специализированные кнопки для заключения сделок и управления позициями. К концу статьи у нас будет базовая панель, готовая к дальнейшим улучшениям.
preview
Автоматизация торговых стратегий на MQL5 (Часть 10): Разработка стратегии Trend Flat Momentum

Автоматизация торговых стратегий на MQL5 (Часть 10): Разработка стратегии Trend Flat Momentum

В настоящей статье мы разрабатываем советник на MQL5 для стратегии Trend Flat Momentum. Мы комбинируем пересечение двух скользящих средних с фильтрами импульса RSI и CCI для генерации торговых сигналов. Также рассказываем о тестировании на истории и потенциальных улучшениях для повышения эффективности в реальных условиях.
preview
Стратегии торговли прорыва: разбор ключевых методов

Стратегии торговли прорыва: разбор ключевых методов

Стратегии прорыва диапазона открытия (Opening Range Breakout, ORB) основаны на идее о том, что начальный торговый диапазон, установленный вскоре после открытия рынка, отражает значимые уровни цен, когда покупатели и продавцы договариваются о стоимости. Выявляя прорывы определенного диапазона вверх или вниз, трейдеры могут извлекать выгоду из моментума, который часто возникает, когда направление рынка становится более отчетливым. В этой статье рассмотрим три стратегии ORB, адаптированные из материалов компании Concretum Group.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 19): Байесовский вывод

Возможности Мастера MQL5, которые вам нужно знать (Часть 19): Байесовский вывод

Байесовский вывод — это применение теоремы Байеса для обновления вероятностной гипотезы по мере поступления новой информации. Это намекает на необходимость адаптации в анализе временных рядов, и поэтому мы рассмотрим, как мы могли бы использовать его при создании пользовательских классов не только применительно к сигналам, но и для управления капиталом и трейлинг-стопами.
preview
Популяционные алгоритмы оптимизации: Искусственные мультисоциальные поисковые объекты (artificial Multi-Social search Objects, MSO)

Популяционные алгоритмы оптимизации: Искусственные мультисоциальные поисковые объекты (artificial Multi-Social search Objects, MSO)

Продолжение предыдущей статьи как развитие идеи социальных групп. В новой статье исследуется эволюция социальных групп с использованием алгоритмов перемещения и памяти. Результаты помогут понять эволюцию социальных систем и применить их в оптимизации и поиске решений.
preview
Нейросети в трейдинге: Гибридные модели последовательностей графов (GSM++)

Нейросети в трейдинге: Гибридные модели последовательностей графов (GSM++)

Гибридные модели последовательностей графов (GSM++) объединяют сильные стороны различных архитектур, обеспечивая высокую точность анализа данных и оптимизацию вычислительных затрат. Эти модели эффективно адаптируются к динамическим рыночным данным, улучшая представление и обработку финансовой информации.
preview
Нейросети в трейдинге: Адаптивное обнаружение рыночных аномалий (DADA)

Нейросети в трейдинге: Адаптивное обнаружение рыночных аномалий (DADA)

Предлагаем познакомиться с фреймворком DADA — инновационным методом выявления аномалий во временных рядах. Он помогает отличить случайные колебания от подозрительных отклонений. В отличие от традиционных методов, DADA гибко подстраивается под разные данные. Вместо фиксированного уровня сжатия он использует несколько вариантов и выбирает наиболее подходящий для каждого случая.
preview
Нейросети в трейдинге: Актер—Режиссёр—Критик (Actor—Director—Critic)

Нейросети в трейдинге: Актер—Режиссёр—Критик (Actor—Director—Critic)

Предлагаем познакомиться с фреймворком Actor-Director-Critic, который сочетает в себе иерархическое обучение и многокомпонентную архитектуру для создания адаптивных торговых стратегий. В этой статье мы подробно рассмотрим, как использование Режиссера для классификации действий Актера помогает эффективно оптимизировать торговые решения и повышать устойчивость моделей в условиях финансовых рынков.
preview
Строим и оптимизируем торговую систему, основанную на объемах торгов (Chaikin Money Flow - CMF)

Строим и оптимизируем торговую систему, основанную на объемах торгов (Chaikin Money Flow - CMF)

В настоящей статье мы представим основанный на объемах индикатор денежного потока Чайкина (Chaikin Money Flow, CMF) после того, как узнаем, как его можно построить, рассчитать и использовать. Разберемся как создать пользовательский индикатор. Проанализируем несколько простых стратегий, которые можно использовать и протестируем их, чтобы понять, какая стратегия лучше.
preview
Нейросети в трейдинге: Контекстно-зависимое обучение, дополненное памятью (MacroHFT)

Нейросети в трейдинге: Контекстно-зависимое обучение, дополненное памятью (MacroHFT)

Предлагаю познакомиться с фреймворком MacroHFT, который применяет контекстно зависимое обучение с подкреплением и память, для улучшения решений в высокочастотной торговле криптовалютами, используя макроэкономические данные и адаптивные агенты.
preview
Разрабатываем мультивалютный советник (Часть 29): Доработка конвейера

Разрабатываем мультивалютный советник (Часть 29): Доработка конвейера

Повышаем удобство работы с конвейером автоматической оптимизации: попробуем пройти путь от создания проекта оптимизации до теста итогового советника. Для наглядности промоделируем по шагам весь процесс создания итогового советника, останавливаясь для внесения желаемых исправлений.
preview
Нейросети в трейдинге: От трансформеров к спайковым нейронам (Основные компоненты)

Нейросети в трейдинге: От трансформеров к спайковым нейронам (Основные компоненты)

Предлагаем вниманию читателя реализацию подходов фреймворка SpikingBrain на основе рекуррентного линейного внимания с гейтами, подробно разобранного в этой статье. Алгоритмы прямого прохода, распределения градиентов и обновления весов обеспечивают эффективную обработку финансовых временных рядов и позволяют воплотить ключевые идеи фреймворка на практике.
preview
От новичка до эксперта: Торговля с использованием уровней Фибоначчи после публикации NFP

От новичка до эксперта: Торговля с использованием уровней Фибоначчи после публикации NFP

На финансовых рынках законы коррекции остаются одними из самых неоспоримых факторов. Существует эмпирическое правило, что цена всегда будет возвращаться — будь то большими движениями или даже в рамках самых маленьких тиковых паттернов, которые часто выглядят как зигзаг. Однако сам паттерн ретрейсмент никогда не бывает фиксированным; он остается неопределенным и подверженным ожиданиям. Эта неопределенность объясняет, почему трейдеры полагаются на несколько уровней Фибоначчи, каждый из которых обладает определенной вероятностью влияния.
preview
Переосмысливаем классические стратегии (Часть II): Пробои индикатора Bollinger Bands

Переосмысливаем классические стратегии (Часть II): Пробои индикатора Bollinger Bands

В статье рассматривается торговая стратегия, объединяющая линейный дискриминантный анализ (Linear Discriminant Analysis, LDA) с полосами Боллинджера с использованием прогнозов категориальных зон для стратегических сигналов входа в рынок.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 17): Мультивалютная торговля

Возможности Мастера MQL5, которые вам нужно знать (Часть 17): Мультивалютная торговля

По умолчанию торговля несколькими валютами недоступна при сборке советника с помощью Мастера. Мы рассмотрим два возможных приема, к которым могут прибегнуть трейдеры, желающие проверить свои идеи на нескольких символах одновременно.
preview
Расширенные переменные и типы данных в MQL5

Расширенные переменные и типы данных в MQL5

Переменные и типы данных — очень важные темы не только в программировании на MQL5, но и в любом языке программирования. Переменные и типы данных MQL5 можно разделить на простые и расширенные. Здесь мы рассмотрим расширенные переменные и типы данных. Простые мы изучали в предыдущей статье.
preview
Разрабатываем мультивалютный советник (Часть 24): Подключаем новую стратегию (I)

Разрабатываем мультивалютный советник (Часть 24): Подключаем новую стратегию (I)

В данной статье рассмотрим как нам подключить новую стратегию к созданной системе автоматической оптимизации. Посмотрим, какие советники нам понадобится создать и можно ли будет обойтись без изменений файлов библиотеки Advisor или свести необходимые изменения к минимуму.
preview
Применение Grey-модели в техническом анализе финансовых временных рядов

Применение Grey-модели в техническом анализе финансовых временных рядов

Данная статья посвящена изучению grey-модели — перспективного инструмента, способного расширить возможности трейдера. Мы рассмотрим некоторые варианты применения этой модели для технического анализа и построения торговых стратегий.
preview
Построение модели для ограничения диапазона сигналов по тренду (Часть 8): Разработка советника (I)

Построение модели для ограничения диапазона сигналов по тренду (Часть 8): Разработка советника (I)

В этой статье мы разработаем наш первый советник на MQL5 на основе индикатора, который мы создали в предыдущей статье. Мы рассмотрим все функции, необходимые для автоматизации процесса, включая управление рисками. Это позволит перейти от ручного выполнения сделок к автоматизированным системам.
preview
Нейросети в трейдинге: Эффективное извлечение признаков для точной классификации (Построение объектов)

Нейросети в трейдинге: Эффективное извлечение признаков для точной классификации (Построение объектов)

Mantis — универсальный инструмент для глубокого анализа временных рядов, гибко масштабируемый под любые финансовые сценарии. Узнайте, как сочетание патчинга, локальных свёрток и кросс-внимания позволяет получить высокоточную интерпретацию рыночных паттернов.
preview
Нейросети в трейдинге: Гиперболическая модель латентной диффузии (HypDiff)

Нейросети в трейдинге: Гиперболическая модель латентной диффузии (HypDiff)

Статья рассматривает способы кодирования исходных данных в гиперболическом латентном пространстве через анизотропные диффузионные процессы. Это помогает точнее сохранять топологические характеристики текущей рыночной ситуации и повышает качество ее анализа.
preview
Нейросети в трейдинге: Сквозная многомерная модель прогнозирования временных рядов (Окончание)

Нейросети в трейдинге: Сквозная многомерная модель прогнозирования временных рядов (Окончание)

Представляем вашему вниманию заключительную часть цикла, посвящённого GinAR — нейросетевому фреймворку для прогнозирования временных рядов. В этой статье мы анализируем результаты тестирования модели на новых данных и оцениваем её устойчивость в условиях реального рынка.
preview
Нейросети в трейдинге: Контекстно-зависимое обучение, дополненное памятью (Окончание)

Нейросети в трейдинге: Контекстно-зависимое обучение, дополненное памятью (Окончание)

Мы завершаем реализацию фреймворка MacroHFT для высокочастотной торговли криптовалютами, который использует контекстно-зависимое обучение с подкреплением и памятью для адаптации к динамичным рыночным условиям. И в завершении данной статьи будет проведено тестирование реализованных подходов, на реальных исторических данных, для оценки их эффективности.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 38): Полосы Боллинджера

Возможности Мастера MQL5, которые вам нужно знать (Часть 38): Полосы Боллинджера

Полосы Боллинджера — очень распространенный индикатор конвертов, используемый многими трейдерами для ручного размещения и закрытия сделок. Мы изучим этот индикатор, рассмотрев как можно больше различных сигналов, которые он генерирует, и посмотрим, как их можно использовать в советнике, собранном с помощью Мастера.
preview
Математические модели в сеточных стратегиях

Математические модели в сеточных стратегиях

В этой статье мы рассмотрим применение математики к сеточным стратегиям. Мы разберем основные принципы работы стратегии, её преимущества и недостатки. Вы узнаете, как построить торговую сетку, задавать оптимальные параметры и эффективно управлять рисками.
preview
Как создать торговый журнал с помощью MetaTrader и Google Sheets

Как создать торговый журнал с помощью MetaTrader и Google Sheets

Создайте торговый журнал с помощью MetaTrader и Google Sheets! Вы узнаете, как синхронизировать свои торговые данные с помощью HTTP POST и извлекать их с помощью HTTP-запросов. Наконец, у вас будет торговый журнал, который поможет эффективно отслеживать ваши сделки.
preview
Разработка инструментария для анализа движения цен (Часть 6): Возврат к среднему значению

Разработка инструментария для анализа движения цен (Часть 6): Возврат к среднему значению

Хотя некоторые концепции на первый взгляд кажутся простыми, воплотить их в жизнь на практике может быть довольно сложно. В статье ниже мы рассмотрим инновационный подход к автоматизации советника, который анализирует рынок, используя стратегию возврата к среднему значению.
preview
Создание советника Daily Drawdown Limiter на языке MQL5

Создание советника Daily Drawdown Limiter на языке MQL5

В статье подробно рассматриваются возможности реализации советника на основе торгового алгоритма. Это поможет автоматизировать систему на MQL5 и взять под контроль дневную просадку.
preview
Теория категорий в MQL5 (Часть 20): Самовнимание и трансформер

Теория категорий в MQL5 (Часть 20): Самовнимание и трансформер

Немного отвлечемся от наших постоянных тем и рассмотрим часть алгоритма ChatGPT. Есть ли у него какие-то сходства или понятия, заимствованные из естественных преобразований? Попытаемся ответить на эти и другие вопросы, используя наш код в формате класса сигнала.
preview
Нейросети в трейдинге: Адаптивная периодическая сегментация (Создание токенов)

Нейросети в трейдинге: Адаптивная периодическая сегментация (Создание токенов)

Предлагаем вам отправиться в захватывающее путешествие по миру адаптивного анализа финансовых временных рядов и узнать, как превратить сложный спектральный разбор и гибкую свёртку в реальные торговые сигналы. Вы увидите, как LightGTS слушает ритм рынка, подстраиваясь под его изменения шагом переменного окна, и как OpenCL-ускорение позволяет превратить вычисления в кратчайший путь к прибыльным решениям.
preview
Комбинаторно-симметричная перекрестная проверка в MQL5

Комбинаторно-симметричная перекрестная проверка в MQL5

В статье показана реализация комбинаторно-симметричной перекрестной проверки на чистом MQL5 для измерения степени подгонки после оптимизации стратегии с использованием медленного полного алгоритма тестера стратегий.
preview
Нейросети в трейдинге: Оптимизация Transformer для прогнозирования временных рядов (LSEAttention)

Нейросети в трейдинге: Оптимизация Transformer для прогнозирования временных рядов (LSEAttention)

Фреймворк LSEAttention предлагает пути совершенствования архитектуры Transformer, и был разработан специально для долгосрочного прогнозирования многомерных временных рядов. Предложенные авторами метода подходы позволяют решить проблемы энтропийного коллапса и нестабильности обучения, характерные для ванильного Transformer.
preview
Нейросети в трейдинге: Фреймворк кросс-доменного прогнозирования временных рядов (TimeFound)

Нейросети в трейдинге: Фреймворк кросс-доменного прогнозирования временных рядов (TimeFound)

В этой статье мы шаг за шагом собираем ядро интеллектуальной модели TimeFound, адаптированной под реальные задачи прогнозирования временных рядов. Если вас интересует практическая реализация нейросетевых патчинг-алгоритмов в MQL5 — вы точно по адресу.
preview
Нейросети в трейдинге: Устойчивые торговые сигналы в любых режимах рынка (Модули внимания)

Нейросети в трейдинге: Устойчивые торговые сигналы в любых режимах рынка (Модули внимания)

В данной статье мы продолжаем реализацию подходов фреймворка ST-Expert, сосредотачиваясь на практических аспектах его применения средствами MQL5. Ранее мы рассмотрели теоретические основы и ключевые компоненты модели, а теперь переходим к непосредственной работе с алгоритмами графового внимания, локального и глобального распределения внимания. Основная цель текущей работы — показать, как концептуальные идеи ST-Expert превращаются в работоспособные решения для анализа и прогнозирования финансовых рядов.
preview
Знакомство с языком MQL5 (Часть 17): Создание советников для разворотов тренда

Знакомство с языком MQL5 (Часть 17): Создание советников для разворотов тренда

Эта статья обучает новичков тому, как создать советник на языке MQL5, который торгует на основе распознавания графических паттернов с использованием пробоев трендовых линий и разворотов. Изучив, как динамически извлекать значения трендовой линии и сравнивать их с ценовым действием, читатели смогут разрабатывать советники, способные выявлять графические паттерны, такие как восходящие и нисходящие трендовые линии, каналы, клинья, треугольники и многие другие, и торговать по ним.
preview
Нейросети в трейдинге: Обучение метапараметров на основе гетерогенности (Основные компоненты)

Нейросети в трейдинге: Обучение метапараметров на основе гетерогенности (Основные компоненты)

В этой статье мы подробно рассматриваем алгоритмы реализации ключевых компонентов фреймворка HimNet. Демонстрируем, как при минимальном числе обучаемых компонентов достигается высокая согласованность и управляемость всей системы. Представленная реализация отличается компактностью и прозрачностью, что облегчает её адаптацию к реальным рыночным задачам.