Нейросети в трейдинге: Агент с многоуровневой памятью
Подходы многоуровневой памяти, имитирующие когнитивные процессы человека, позволяют обрабатывать сложные финансовые данные и адаптироваться к новым сигналам, что способствует повышению эффективности инвестиционных решений в условиях динамичных рынков.
Создаем простой мультивалютный советник с использованием MQL5 (Часть 2): Сигналы индикатора - мультитаймфреймовый Parabolic SAR
Под мультивалютным советником в этой статье понимается советник, или торговый робот, который может торговать (открывать/закрывать ордера, управлять ордерами, например, трейлинг-стоп-лоссом и трейлинг-профитом) более чем одной парой символов с одного графика. На этот раз мы будем использовать только один индикатор, а именно Parabolic SAR или iSAR на нескольких таймфреймах, начиная с PERIOD_M15 и заканчивая PERIOD_D1.
MQL5-советник, интегрированный в Telegram (Часть 2): Отправка сигналов из MQL5 в Telegram
В этой статье мы создадим MQL5-советник, интегрированный с Telegram, который отправляет в мессенджер сигналы пересечения скользящих средних. Мы подробно опишем процесс генерации торговых сигналов на основе пересечений скользящих средних, реализуем необходимый код на языке MQL5 и обеспечим бесперебойную работу интеграции. В результате мы получим систему, которая отправляет торговые оповещения в реальном времени непосредственно в групповой чат Telegram.
Создаем простой мультивалютный советник с использованием MQL5 (Часть 4): Треугольная скользящая средняя — Сигналы индикатора
Под мультивалютным советником в этой статье понимается советник, или торговый робот, который может торговать (открывать/закрывать ордера, управлять ордерами, например, трейлинг-стоп-лоссом и трейлинг-профитом) более чем одной парой символов с одного графика. На этот раз мы будем использовать только один индикатор, а именно треугольную скользящую среднюю на одном или нескольких таймфреймах.
Нейросети в трейдинге: Обнаружение объектов с учетом сцены (HyperDet3D)
Предлагаем вам познакомиться с новым подход обнаружения объектов при помощи гиперсетей. Гиперсети могут генерировать весовые коэффициенты для основной модели, что позволяет учитывать особенности текущего состояния рынка. Такой подход позволяет улучшить точность прогнозирования, адаптируя модель к различным торговым условиям.
Нейросети — это просто (Часть 84): Обратимая нормализация (RevIN)
Мы давно уже усвоили, что большую роль в стабильности обучения модели играет предварительная обработка исходных данных. И для online обработки "сырых" исходных данных мы часто используем слой пакетной нормализации. Но порой возникает необходимость обратной процедуры. Об одном из возможных подходов к решению подобных задач мы говорим в данной статье.
Нейросети — это просто (Часть 75): Повышение производительности моделей прогнозирования траекторий
Создаваемые нами модели становятся все больше и сложнее. Вместе с тем растут затраты не только на их обучение, но и эксплуатацию. При этом довольно часто мы сталкиваемся с ситуацией, когда затраты времени на принятие решения бывают критичны. И в этой связи мы обращаем свое внимание на методы оптимизации производительности моделей без потери качества.
Скальпинг по потоку ордеров (Order Flow Scalping) с MQL5
Данный советник для MetaTrader 5 реализует стратегию Scalping OrderFlow (стратегия скальпирования потока ордеров) с расширенным управлением рисками. В нем используется множество технических индикаторов для определения торговых возможностей на основе дисбалансов в потоке ордеров. Бэк-тестирование показывает потенциальную прибыльность, но подчеркивает необходимость дальнейшей оптимизации, особенно в области управления рисками и соотношения результатов торговли. Он подходит для опытных трейдеров и требует тщательного тестирования и понимания перед практическим применением.
Сделайте торговые графики лучше с интерактивным графическим интерфейсом на основе MQL5 (Часть II): Перемещаемый интерфейс (II)
Раскройте потенциал динамического представления данных в своих торговых стратегиях и утилитах с помощью нашего подробного руководства по созданию перемещаемых графических интерфейсов в MQL5. Погрузитесь в фундаментальные принципы объектно-ориентированного программирования и узнайте, как легко и эффективно разрабатывать и использовать один или несколько перемещаемых графических интерфейсов на одном графике.
Введение в MQL5 (Часть 3): Изучаем основные элементы MQL5
В этой статье мы продолжаем изучать основы программирования на MQL5. Мы рассмотрим массивы, пользовательские функции, препроцессоры и обработку событий. Для наглядности каждый шаг всех объяснений будет сопровождаться кодом. Эта серия статей закладывает основу для изучения MQL5, уделяя особое внимание объяснению каждой строки кода.
От новичка до эксперта: Раскрытие секретов теней свечей
В настоящем обсуждении сделаем шаг вперед для раскрытия основного ценового движения, скрытого в тенях свечей. Интегрируя функцию визуализации wick в индикатор Market Periods Synchronizer, мы повышаем аналитическую глубину и интерактивность этого инструмента. Эта усовершенствованная система позволяет трейдерам визуализировать отклонения цен на старших таймфреймах непосредственно на графиках младших таймфреймов, выявляя подробные структуры, которые когда-то были скрыты в тени.
Торговый инструментарий MQL5 (Часть 1): Разработка EX5-библиотеки для управления позициями
Мы рассмотрим создание инструментария разработчика для управления позициями с помощью MQL5. В этой статье я покажу, как создать библиотеку функций (ex5), которая будет выполнять как простые, так и сложные операции по управлению позициями, включая автоматическую обработку и сообщение о различных ошибках, возникающих при управлении позициями с помощью MQL5.
Разработка торгового советника с нуля (Часть 20): Новая система ордеров (III)
Продолжим внедрение новой системы ордеров. Создание такой системы требует хорошего владения MQL5, а также понимания того, как на самом деле работает платформа MetaTrader 5 и какие ресурсы она нам предоставляет.
Как интегрировать концепцию Smart Money (OB) в сочетании с индикатором Фибоначчи для оптимального входа в сделку
SMC (Order Block) — это ключевые области, где институциональные трейдеры совершают значительные покупки или продажи. После значительного движения цены уровни Фибоначчи помогают определить потенциальный откат от недавнего максимума колебания (swing high) к минимуму колебания (swing low) для определения оптимальной точки входа в сделку.
Нейросети — это просто (Часть 68): Офлайн оптимизация политик на основе предпочтений
С первых статей, посвященных обучению с подкреплением, мы так или иначе затрагиваем 2 проблемы: исследование окружающей среды и определение функции вознаграждения. Последние статьи были посвящены проблеме исследования в офлайн обучении. В данной статье я хочу Вас познакомить с алгоритмом, авторы которого полностью отказались от функции вознаграждения.
Нейросети в трейдинге: Transformer с относительным кодированием
Самоконтролируемое обучение может оказаться эффективным способом анализа больших объемов неразмеченных данных. Основным фактором успеха является адаптация моделей под особенности финансовых рынков, что способствует улучшению результативности традиционных методов. Эта статья познакомит вас с альтернативным механизмом внимания, который позволяет учитывать относительные зависимости и взаимосвязи между исходными данными.
Реализация советника Deus: Автоматическая торговля с RSI и скользящими средними в MQL5
В статье описываются шаги по внедрению советника Deus на основе индикаторов RSI и скользящей средней для управления автоматической торговлей.
Нейросети — это просто (Часть 55): Контрастный внутренний контроль (CIC)
Контрастное обучение (Contrastive learning) - это метод обучения представлению без учителя. Его целью является обучение модели выделять сходства и различия в наборах данных. В данной статье мы поговорим об использовании подходов контрастного обучения для исследования различных навыков Актера.
Нейросети — это просто (Часть 93): Адаптивное прогнозирование в частотной и временной областях (Окончание)
В данной статье мы продолжаем реализацию подходов ATFNet — модели, которая адаптивно объединяет результаты 2 блоков (частотного и временного) прогнозирования временных рядов
Теория категорий в MQL5 (Часть 8): Моноиды
Статья продолжает серию о реализации теории категорий в MQL5. Здесь мы вводим моноиды как домен (множество), который отличает теорию категорий от других методов классификации данных за счет включения правил и элемента равнозначности.
Нейросети — это просто (Часть 89): Трансформер частотного разложения сигнала (FEDformer)
Все рассмотренные нами ранее модели анализируют состояние окружающей среды в виде временной последовательности. Однако, тот же временной ряд можно представить и в виде частотных характеристик. В данной статье я предлагаю вам познакомиться с алгоритмом, который использует частотные характеристики временной последовательности для прогнозирования будущих состояний.
Разрабатываем мультивалютный советник (Часть 15): Готовим советник к реальной торговле
Постепенно приближаясь к получению готового советника, необходимо уделить внимание вопросам, которые являются второстепенными на этапе тестирования торговой стратегии, но становятся важными при переходе к реальной торговле.
Разработка торгового советника с нуля (Часть 26): Навстречу будущему (I)
Сегодня мы выведем нашу систему ордеров на новый уровень, но сначала нам нужно решить несколько задач. Сейчас у нас есть разные вопросы, которые связаны с тем, как мы хотим работать и какие вещи мы делаем в течение торгового дня.
Разрабатываем мультивалютный советник (Часть 18): Автоматизация подбора групп с учётом форвард-периода
Продолжим автоматизировать шаги, которые ранее мы выполняли вручную. В этот раз вернёмся к автоматизации второго этапа, то есть выбора оптимальной группы одиночных экземпляров торговых стратегий, дополнив его возможностью учитывать результаты экземпляров на форвард-периоде.
Нейросети — это просто (Часть 19): Ассоциативные правила средствами MQL5
Продолжаем тему поиска ассоциативных правил. В предыдущей статье мы рассмотрели теоретические аспекты данного типа задач. В этой статье я продемонстрирую реализацию метода FP-Growth средствами MQL5. А также мы протестируем нашу реализацию на реальных данных.
Шаблоны проектирования в программировании на MQL5 (Часть 4): Поведенческие шаблоны 2
Статья завершает серию о шаблонах проектирования в области программного обеспечения. Я уже упоминал, что существуют три типа шаблонов проектирования - порождающие, структурные и поведенческие. Мы доработаем оставшиеся паттерны поведенческого типа, которые помогут задать способ взаимодействия между объектами таким образом, чтобы сделать наш код чистым.
Нейросети — это просто (Часть 64): Метод Консервативного Весового Поведенческого Клонирования (CWBC)
В результате тестов, проведенных в предыдущих статьях, мы пришли к выводу, что оптимальность обученной стратегии во многом зависит от используемой обучаемой выборки. В данной статье я предлагаю вам познакомиться с довольно простым и эффективном методе выбора траекторий для обучения моделей.
Нейросети в трейдинге: Сегментация данных на основе уточняющих выражений
В процессе анализа рыночной ситуации мы делим её на отдельные сегменты, выявляя ключевые тенденции. Однако традиционные методы анализа часто фокусируются на одном аспекте, что ограничивает восприятие. В данной статье мы познакомимся с методом, позволяющем выделять несколько объектов, что даёт более полное и многослойное понимание ситуации.
Как построить советник, работающий автоматически (Часть 12): Автоматизация (IV)
Если вы думаете, что автоматизированные системы просты, то наверно вы еще не до конца поняли, что нужно для их создания. В данном материале мы поговорим о проблеме, с которой сталкиваются многие советники: неизбирательное исполнение ордеров, и возможное решение этой проблемы.
Разметка данных в анализе временных рядов (Часть 1):Создаем набор данных с маркерами тренда с помощью графика советника
В этой серии статей представлены несколько методов маркировки временных рядов, которые могут создавать данные, соответствующие большинству моделей искусственного интеллекта (ИИ). Целевая маркировка данных может сделать обученную модель ИИ более соответствующей пользовательским целям и задачам, повысить точность модели и даже помочь модели совершить качественный скачок!
Введение в MQL5 (Часть 4): Структуры, классы и функции времени
В этой серии мы продолжаем раскрывать секреты программирования. В новой статье мы изучим в основы структур, классов и временных функций и получим новые навыки для эффективного программирования. Это руководство, возможно, будет полезно не только для новичков, но и для опытных разработчиков, поскольку упрощает сложные концепции, предоставляя ценную информацию для освоения MQL5. Продолжайте изучать новое, совершенствуйте навыки программирования и освойте мир алгоритмического трейдинга.
Нейросети — это просто (Часть 51): Актор-критик, управляемый поведением (BAC)
В последних двух статьях рассматривался алгоритм Soft Actor-Critic, который включает энтропийную регуляризацию в функцию вознаграждения. Этот подход позволяет балансировать исследование среды и эксплуатацию модели, но он применим только к стохастическим моделям. В данной статье рассматривается альтернативный подход, который применим как для стохастических, так и для детерминированных моделей.
Построение модели для ограничения диапазона сигналов по тренду (Часть 3): Обнаружение изменений трендов при использовании системы
В этой статье рассматривается, как экономические новости, поведение инвесторов и различные факторы могут влиять на развороты рыночных трендов. Статья включает видео с пояснениями и внедряет MQL5-код в программу для обнаружения разворотов тренда, оповещения и принятия соответствующих мер в зависимости от рыночных условий.
Разработка советника на основе стратегии прорыва диапазона консолидации на MQL5
В статье описываются шаги по созданию торгового советника, который извлекает выгоду из ценовых прорывов после периодов консолидации. Определяя диапазоны консолидации и устанавливая уровни прорыва, трейдеры могут автоматизировать свои торговые решения на основе этой стратегии. Советник призван обеспечить четкие точки входа и выхода, избегая ложных пробоев.
Нейросети — это просто (Часть 50): Soft Actor-Critic (оптимизация модели)
В предыдущей статье мы реализовали алгоритм Soft Actor-Critic, но не смогли обучить прибыльную модель. В данной статье мы проведем оптимизацию ранее созданной модели для получения желаемых результатов её работы.
Возможности Мастера MQL5, которые вам нужно знать (Часть 27): Скользящие средние и угол атаки
Угол атаки (Angle of Attack) — популярный показатель, значение крутизны (steepness) которого, как считается, тесно связано с силой преобладающего тренда. Мы рассмотрим, как он обычно трактуется и применяется, и выясним, есть ли изменения, которые можно было бы внести в способ его измерения для улучшения торговой системы.
Создание советника на MQL5 на основе стратегии PIRANHA с использованием Полос Боллинджера
В настоящей статье мы создаем советника (EA) на MQL5 на основе стратегии PIRANHA, использующего Полосы Боллинджера для повышения эффективности торговли. Мы обсуждаем ключевые принципы стратегии, реализацию кода, а также методы тестирования и оптимизации. Эти знания позволят эффективно использовать советник в ваших торговых сценариях
Нейросети в трейдинге: Безмасочный подход к прогнозированию ценового движения
В данной статье предлагаем познакомиться с методом Mask-Attention-Free Transformer (MAFT) и его применение в области трейдинга. В отличие от традиционных Transformer, требующих маскирования данных при обработке последовательностей, MAFT оптимизирует процесс внимания, устраняя необходимость в маскировании, что значительно повышает вычислительную эффективность.
Разработка показателя качества советников
В этой статье мы объясним, как разработать показатель качества, который ваш советник сможет отображать в тестере стратегии. Мы познакомимся с двумя известными методами расчета (Ван Тарп и Санни Харрис).
Торгуем опционы без опционов (Часть 1): Основы теории и эмуляция через базовые активы
Статья описывает вариант эмуляции опционов через базовый актив, реализованный на языке программирования MQL5. Сравниваются преимущества и недостатки выбранного подхода с реальными биржевыми опционами на примере срочного рынка ФОРТС московской биржи MOEX и криптобиржи Bybit.