Статьи по программированию и использованию торговых роботов на языке MQL5

icon

Эксперты, созданные для платформы MetaTrader, выполняют самые разнообразные функции, задуманные их разработчиками. Торговые роботы могут отслеживать множество финансовых инструментов 24 часа в сутки, копировать сделки, создавать и отсылать отчеты, анализировать новости и даже предоставлять трейдеру собственный графический интерфейс, разработанный по его заказу.

В статьях предлагаются приемы программирования, математические идеи по обработке данных, советы по созданию и заказу торговых роботов.

Новая статья
последние | лучшие
preview
Управление рисками (Часть 2): Реализация расчета лотов в графическом интерфейсе

Управление рисками (Часть 2): Реализация расчета лотов в графическом интерфейсе

В этой статье мы рассмотрим, как улучшить и более эффективно применять концепции, изложенные в предыдущей статье, используя мощные библиотеки графических элементов управления MQL5. Я шаг за шагом проведу вас через процесс создания полностью функционального графического интерфейса, объясняя стоящий за ним план проектирования, а также назначение и принцип работы каждого используемого метода. Кроме того, в конце статьи мы протестируем созданную нами панель, чтобы убедиться в ее корректной работе и соответствии заявленным целям.
preview
Нейросети в трейдинге: Выявление аномалий в частотной области (Окончание)

Нейросети в трейдинге: Выявление аномалий в частотной области (Окончание)

Продолжаем работу над имплементацией подходов фреймворка CATCH, который объединяет преобразование Фурье и механизм частотного патчинга, обеспечивая точное выявление рыночных аномалий. В этой работе мы завершаем реализацию собственного видения предложенных подходов и проведем тестирование новых моделей на реальных исторических данных.
preview
Нейросети в трейдинге: Эффективное извлечение признаков для точной классификации (Mantis)

Нейросети в трейдинге: Эффективное извлечение признаков для точной классификации (Mantis)

Познакомьтесь с Mantis — лёгкой фундаментальной моделью для классификации временных рядов на базе Transformer с контрастным предварительным обучением и гибридным вниманием, обеспечивающими рекордную точность и масштабируемость.
preview
Автоматизация торговых стратегий на MQL5 (Часть 14): Стратегия каскадной торговли с MACD-RSI и статистическими методами

Автоматизация торговых стратегий на MQL5 (Часть 14): Стратегия каскадной торговли с MACD-RSI и статистическими методами

В настоящей статье мы представляем стратегию лейеринга, которая сочетает индикаторы MACD и RSI со статистическими методами для автоматизации динамической торговли на MQL5. Мы исследуем архитектуру этого каскадного подхода, подробно описываем его реализацию с помощью ключевых сегментов кода и даем рекомендации читателям по тестированию на истории для оптимизации эффективности. Наконец, в заключение мы подчеркиваем потенциал стратегии и закладываем основу для дальнейших усовершенствований в автоматической торговле.
preview
Нейросети в трейдинге: Устойчивые торговые сигналы в любых режимах рынка (ST-Expert)

Нейросети в трейдинге: Устойчивые торговые сигналы в любых режимах рынка (ST-Expert)

В этой статье мы познакомимся с фреймворком ST-Expert, который обеспечивает устойчивость прогнозов к рыночной неопределённости, позволяя учитывать локальные и глобальные зависимости во временных рядах. Его гибкая архитектура способствует адаптивности моделей и повышает точность предсказаний.
preview
Нейросети в трейдинге: Модели многократного уточнения прогнозов (RAFT)

Нейросети в трейдинге: Модели многократного уточнения прогнозов (RAFT)

Фреймворк RAFT предлагает принципиально иной подход к прогнозированию динамики рынка — не как разовый снимок, а как итеративное уточнение состояния в реальном времени. Он одновременно учитывает локальные и глобальные изменения, сохраняя высокую точность даже при сложных ценовых структурах.
preview
Введение в MQL5 (Часть 10): Руководство по работе со встроенными индикаторами в MQL5 для начинающих

Введение в MQL5 (Часть 10): Руководство по работе со встроенными индикаторами в MQL5 для начинающих

В этой статье описывается работа со встроенными индикаторами в MQL5, отдельное внимание уделяется созданию советника на основе индикатора RSI с использованием проектного подхода. Вы научитесь получать и использовать значения RSI, обрабатывать колебания ликвидности и улучшать визуализацию торговли с помощью графических объектов. Кроме того, в статье рассматривается еще один важный аспект. Сюда относится риск в процентах от депозита, соотношение риска и доходности, а также модификация риска на ходу для защиты прибыли.
preview
Разработка системы репликации (Часть 29): Проект советника — класс C_Mouse (III)

Разработка системы репликации (Часть 29): Проект советника — класс C_Mouse (III)

После улучшения класса C_Mouse, мы можем сосредоточиться на создании класса, призванного создать совершенно новую основу для обучения. Как уже упоминалось в начале статьи, мы не будем использовать наследование или полиморфизм для создания этого нового класса. Вместо этого мы изменим, а точнее, добавим новые объекты в ценовую линию. Именно этим мы и займемся в данный момент, а в следующей статье мы рассмотрим, как изменить исследования. Но мы сделаем всё это, не меняя код класса C_Mouse. Признаюсь, на практике было бы легче достичь этого с помощью наследования или полиморфизма. однако существуют и другие методы достижения такого же результата.
preview
Пользовательские символы MQL5: Создаем символ 3D-баров

Пользовательские символы MQL5: Создаем символ 3D-баров

В данной статье представлено детальное руководство по созданию инновационного индикатора 3DBarCustomSymbol.mq5, который генерирует пользовательские символы в MetaTrader 5, объединяющие цену, время, объем и волатильность в единое трехмерное представление. Рассматриваются математические основы, архитектура системы, практические аспекты реализации и применения в торговых стратегиях.
preview
Построение модели для ограничения диапазона сигналов по тренду (Часть 8): Разработка советника (II)

Построение модели для ограничения диапазона сигналов по тренду (Часть 8): Разработка советника (II)

Ранее мы обсуждали советник на основе индикатора, который также работал в паре с независимым скриптом для построения структуры риска и вознаграждения. Сегодня мы обсудим архитектуру MQL5-советника, объединяющего все функции в одной программе.
preview
Нейросети в трейдинге: Модель темпоральных запросов (TQNet)

Нейросети в трейдинге: Модель темпоральных запросов (TQNet)

Фреймворк TQNet открывает новые возможности в моделировании и прогнозировании финансовых временных рядов, сочетая модульность, гибкость и высокую производительность. В статье раскрывается возможность реализации сложных механизмом работы с глобальными корреляциями, включая продвинутые методы инициализации параметров.
preview
Инженерия признаков с Python и MQL5 (Часть II): Угол наклона цены

Инженерия признаков с Python и MQL5 (Часть II): Угол наклона цены

На форуме MQL5 есть множество сообщений с просьбами помочь рассчитать угол наклона изменения цены. В этой статье мы рассмотрим один из способов расчета наклона изменения цены. Этот способ применим на любом рынке. Кроме того, мы определим, стоит ли разработка этой новой функции дополнительных усилий и времени. Выясним, может ли угол наклона цены улучшить точность нашей AI-модели при прогнозировании пары USDZAR на минутном таймфрейме.
preview
Нейросети в трейдинге: Многоагентная система с концептуальным подтверждением (Окончание)

Нейросети в трейдинге: Многоагентная система с концептуальным подтверждением (Окончание)

Продолжаем реализацию подходов, предложенных авторами фреймворка FinCon. FinCon является многоагентной системой, основанной на больших языковых моделях (LLM). Сегодня мы реализуем необходимые модули и проведем комплексное тестирование модели на реальных исторических данных.
preview
MQL5-советник, интегрированный в Telegram (Часть 4): Модуляризация функций кода для улучшенного повторного использования

MQL5-советник, интегрированный в Telegram (Часть 4): Модуляризация функций кода для улучшенного повторного использования

В этой статье мы реорганизуем существующий код отправки сообщений и скриншотов из MQL5 в Telegram, преобразовав его в многоразовые модульные функции. Это оптимизирует процесс, обеспечивая более эффективное выполнение и более простое управление кодом в нескольких экземплярах.
preview
Разрабатываем мультивалютный советник (Часть 23): Приводим в порядок конвейер этапов автоматической оптимизации проектов (II)

Разрабатываем мультивалютный советник (Часть 23): Приводим в порядок конвейер этапов автоматической оптимизации проектов (II)

Мы стремимся создать систему автоматической периодической оптимизации торговых стратегий, используемых в одном итоговом советнике. С развитием система становится всё более сложной, поэтому время от времени надо смотреть на неё в целом с целью выявления узких мест и неоптимальных решений.
preview
Разработка системы репликации (Часть 30): Проект советника — класс C_Mouse (IV)

Разработка системы репликации (Часть 30): Проект советника — класс C_Mouse (IV)

Сегодня мы изучим технику, которая может очень сильно помочь нам на разных этапах нашей профессиональной жизни в качестве программиста. Вопреки мнению многих, ограничена не сама платформа, а знания человека, который говорит об ограничениях. В данной статье будет рассказано о том, что с помощью здравого смысла и творческого подхода можно сделать платформу MetaTrader 5 гораздо более интересной и универсальной, не прибегая к созданию безумных программ или чего-то подобного, и создать простой, но безопасный и надежный код. Мы будем использовать свою изобретательность, чтобы изменить уже существующий код, не удаляя и не добавляя ни одной строки в исходный код.
preview
Торгуем опционы без опционов (Часть 2): Использование в реальной торговле

Торгуем опционы без опционов (Часть 2): Использование в реальной торговле

В статье рассматриваются простые опционные стратегии и их реализация на MQL5. Пишем базовый эксперт, который будет модернизироваться и усложняться.
preview
Нейросети в трейдинге: Гибридные модели последовательностей графов (Окончание)

Нейросети в трейдинге: Гибридные модели последовательностей графов (Окончание)

Продолжаем изучение гибридных моделей последовательностей графов (GSM++), которые интегрируют преимущества различных архитектур, обеспечивая высокую точность анализа и эффективное распределение вычислительных ресурсов. Эти модели эффективно выявляют скрытые закономерности, снижая влияние рыночного шума и повышая качество прогнозирования.
preview
Создание самооптимизирующихся советников на MQL5 (Часть 4): Динамическое изменение размера позиции

Создание самооптимизирующихся советников на MQL5 (Часть 4): Динамическое изменение размера позиции

Успешное применение алгоритмической торговли требует непрерывного междисциплинарного обучения. Однако бесконечный спектр возможностей может потребовать многолетних усилий, не принося ощутимых результатов. Чтобы решить эту проблему, мы предлагаем структуру, которая постепенно усложняется, позволяя трейдерам постепенно совершенствовать свои стратегии, а не тратить неопределенное время на неопределенные результаты.
preview
Добавляем пользовательскую LLM в торгового робота (Часть 5): Разработка и тестирование торговой стратегии с помощью LLM(IV) — Тестирование торговой стратегии

Добавляем пользовательскую LLM в торгового робота (Часть 5): Разработка и тестирование торговой стратегии с помощью LLM(IV) — Тестирование торговой стратегии

Языковые модели (LLM) являются важной частью быстро развивающегося искусственного интеллекта, поэтому нам следует подумать о том, как интегрировать мощные LLM в нашу алгоритмическую торговлю. Большинству людей сложно настроить эти модели в соответствии со своими потребностями, развернуть их локально, а затем применить к алгоритмической торговле. В этой серии статей будет рассмотрен пошаговый подход к достижению этой цели.
preview
Переосмысливаем классические стратегии (Часть V): Анализ нескольких инструментов в валютной паре USDZAR

Переосмысливаем классические стратегии (Часть V): Анализ нескольких инструментов в валютной паре USDZAR

В данной серии статей мы вновь рассматриваем классические стратегии, чтобы выяснить, можно ли улучшить стратегию с помощью ИИ. В сегодняшней статье мы рассмотрим популярную стратегию анализа нескольких инструментов с использованием корзины коррелированных ценных бумаг. Сосредоточимся на экзотической валютной паре USDZAR.
preview
Введение в Connexus (Часть 1): Как использовать функцию WebRequest?

Введение в Connexus (Часть 1): Как использовать функцию WebRequest?

Настоящая статья является началом серии разработок для библиотеки под названием “Connexus”, предназначенной для облегчения выполнения HTTP-запросов с помощью MQL5. Цель настоящего проекта - предоставить конечному пользователю такую возможность и показать, как использовать эту вспомогательную библиотеку. Я намеревался сделать его как можно более простым, чтобы облегчить изучение и обеспечить возможность для будущих разработок.
preview
Добавляем пользовательскую LLM в торгового робота (Часть 5): Разработка и тестирование торговой стратегии с помощью LLM (II) - Настройка LoRA

Добавляем пользовательскую LLM в торгового робота (Часть 5): Разработка и тестирование торговой стратегии с помощью LLM (II) - Настройка LoRA

Языковые модели (LLM) являются важной частью быстро развивающегося искусственного интеллекта, поэтому нам следует подумать о том, как интегрировать мощные LLM в нашу алгоритмическую торговлю. Большинству людей сложно настроить эти модели в соответствии со своими потребностями, развернуть их локально, а затем применить к алгоритмической торговле. В этой серии статей будет рассмотрен пошаговый подход к достижению этой цели.
preview
Создание торговой панели администратора на MQL5 (Часть II): Повышение оперативности реагирования и быстрого обмена сообщениями

Создание торговой панели администратора на MQL5 (Часть II): Повышение оперативности реагирования и быстрого обмена сообщениями

В настоящей статье улучшим оперативность работы панели администратора, созданную нами ранее. Кроме того, мы рассмотрим важность быстрого обмена сообщениями в контексте торговых сигналов.
preview
Разработка советника для анализа новостных событий о пробоях на основе календаря на MQL5

Разработка советника для анализа новостных событий о пробоях на основе календаря на MQL5

Волатильность, как правило, достигает пика во время важных новостных событий, создавая значительные возможности для пробоя. В настоящей статье мы расскажем о процессе реализации основанной на календаре стратегии прорыва. Мы рассмотрим все, начиная с создания класса для интерпретации и хранения календарных данных, разработки реалистичных бэк-тестов на основе этих данных и, наконец, реализации кода исполнения для реальной торговли.
preview
Нейросети в трейдинге: Фреймворк кросс-доменного прогнозирования временных рядов (Окончание)

Нейросети в трейдинге: Фреймворк кросс-доменного прогнозирования временных рядов (Окончание)

Статья посвящена практическому построению модели TimeFound для прогнозирования временных рядов. Рассматриваются ключевые этапы реализации основных подходов фреймворка средствами MQL5.
preview
Торговый инструментарий MQL5 (Часть 3): Разработка EX5-библиотеки для управления отложенными ордерами

Торговый инструментарий MQL5 (Часть 3): Разработка EX5-библиотеки для управления отложенными ордерами

Вы узнаете, как разработать и внедрить комплексную библиотеку отложенных EX5-ордеров в ваш код или MQL5-проекты. Мы рассмотрим, как импортировать и реализовать такую библиотеку в составе торговой панели или графического пользовательского интерфейса (GUI). Панель ордеров советника позволит пользователям открывать, отслеживать и удалять отложенные ордера по магическому числу непосредственно из графического интерфейса в окне графика.
preview
Тестирование надежности торговых советников

Тестирование надежности торговых советников

При разработке стратегии необходимо учитывать множество сложных деталей, на многие из которых не обращают особого внимания начинающие трейдеры. В результате многим трейдерам, включая меня, пришлось усвоить эти уроки на собственном горьком опыте. Данная статья основана на моих наблюдениях за распространенными подводными камнями, с которыми сталкивается большинство начинающих трейдеров при разработке стратегий на MQL5. В ней представлен ряд советов, хитростей и примеров, которые помогут определить причину дисквалификации советника и протестировать надежность наших собственных советников простым в применении способом. Цель состоит в том, чтобы обучить читателей, помогая им избежать мошенничества в будущем при покупке советников, а также предотвратить ошибки при разработке собственной стратегии.
preview
Нейросети в трейдинге: Выявление аномалий в частотной области (CATCH)

Нейросети в трейдинге: Выявление аномалий в частотной области (CATCH)

Фреймворк CATCH сочетает преобразование Фурье и частотный патчинг для точного выявления рыночных аномалий, недоступных традиционным методам. В данной работе мы рассмотрим, как этот подход раскрывает скрытые закономерности в финансовых данных.
preview
Нейросети в трейдинге: Двойная кластеризация временных рядов (DUET)

Нейросети в трейдинге: Двойная кластеризация временных рядов (DUET)

Фреймворк DUET предлагает инновационный подход к анализу временных рядов, сочетая временную и канальную кластеризацию для выявления скрытых закономерностей в анализируемых данных. Это позволяет адаптировать модели к изменениям во времени и повысить качество прогнозирования за счет устранения шума.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 20): Символьная регрессия

Возможности Мастера MQL5, которые вам нужно знать (Часть 20): Символьная регрессия

Символьная регрессия — это форма регрессии, которая начинается с минимальных или нулевых предположений относительно того, как будет выглядеть базовая модель, отображающая изучаемые наборы данных. Несмотря на то, что ее можно реализовать с помощью байесовских методов или нейронных сетей, мы рассмотрим, как реализация с использованием генетических алгоритмов может помочь настроить класс сигналов советника, пригодный для использования в Мастере MQL5.
preview
Нейросети в трейдинге: Адаптивное восприятие рыночной динамики (Окончание)

Нейросети в трейдинге: Адаптивное восприятие рыночной динамики (Окончание)

В статье продолжается работа над реализацией подходов фреймворка STE-FlowNet, который сочетает многопоточную обработку с рекуррентными структурами для точного анализа сложных данных. Проведенные тесты подтвердили его стабильность и гибкость в разных сценариях. Архитектура ускоряет вычисления и позволяет глубже моделировать зависимости во временных рядах. Такой подход открывает новые возможности для практического применения в трейдинге и аналитике.
preview
Автоматизация торговых стратегий на MQL5 (Часть 13): Создание торгового алгоритма для паттерна "Голова и Плечи"

Автоматизация торговых стратегий на MQL5 (Часть 13): Создание торгового алгоритма для паттерна "Голова и Плечи"

В настоящей статье мы автоматизируем паттерн «Голова-Плечи» на MQL5. Мы анализируем его архитектуру, реализуем советник для его обнаружения и торговли, а также тестируем результаты на истории. Этот процесс раскрывает практичный торговый алгоритм, который можно усовершенствовать.
preview
Нейросети в трейдинге: Распутывание структурных компонентов (Окончание)

Нейросети в трейдинге: Распутывание структурных компонентов (Окончание)

В статье подробно раскрывается SCNN-архитектура и один из вариантов её реализация средствами MQL5. Мы покажем, как декомпозиция временных рядов сочетается с нейросетевыми методами и вниманием.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 42): Осциллятор ADX

Возможности Мастера MQL5, которые вам нужно знать (Часть 42): Осциллятор ADX

ADX — еще один относительно популярный технический индикатор, используемый некоторыми трейдерами для оценки силы преобладающего тренда. Действуя как комбинация двух других индикаторов, он представляет собой осциллятор, паттерны которого мы исследуем в этой статье с помощью Мастера MQL5 и его вспомогательных классов.
preview
Автоматизация торговых стратегий с помощью MQL5 (Часть 2): Система прорыва Кумо с Ichimoku и Awesome Oscillator

Автоматизация торговых стратегий с помощью MQL5 (Часть 2): Система прорыва Кумо с Ichimoku и Awesome Oscillator

В этой статье мы создаем советник, который автоматизирует стратегию прорыв Кумо (Kumo Breakout) с использованием индикатора Ichimoku Kinko Hyo и Awesome Oscillator. Мы рассмотрим инициализацию хэндлов индикаторов, обнаружение условий прорыва и автоматизацию входов и выходов из сделок. Кроме того, мы внедрим трейлинг-стопы и логику управления позициями для повышения производительности советника и его адаптивности к рыночным условиям.
preview
Нейросети в трейдинге: Иерархия навыков для адаптивного поведения агентов (HiSSD)

Нейросети в трейдинге: Иерархия навыков для адаптивного поведения агентов (HiSSD)

Предлагаем познакомиться с фреймворком HiSSD, который объединяет иерархическое обучение и мультиагентные подходы для создания адаптивных систем. В этой работе мы подробно рассмотрим, как этот инновационный подход помогает выявлять скрытые закономерности на финансовых рынках и оптимизировать стратегии торговли в условиях децентрализации.
preview
Создание торговой панели администратора на MQL5 (Часть V): Двухфакторная аутентификация (2FA)

Создание торговой панели администратора на MQL5 (Часть V): Двухфакторная аутентификация (2FA)

В статье рассмотрено повышение безопасности панели торгового администратора, которая в настоящее время находится в разработке. Мы рассмотрим, как внедрить MQL5 в новую стратегию безопасности, интегрировав API Telegram для двухфакторной аутентификации (2FA). Статья предоставит ценную информацию о применении MQL5 для усиления мер безопасности. Кроме того, мы рассмотрим функцию MathRand, сосредоточившись на ее функциональности и на том, как ее можно эффективно использовать в нашей системе безопасности.
preview
Нейросети в трейдинге: Иерархический двухбашенный трансформер (Hidformer)

Нейросети в трейдинге: Иерархический двухбашенный трансформер (Hidformer)

Предлагаем познакомиться с фреймворком иерархического двухбашенного трансформера (Hidformer), который был разработан для прогнозирования временных рядов и анализа данных. Авторы фреймворка предложили несколько улучшений к архитектуре Transformer, что позволило повысить точность прогнозов и снизить потребление вычислительных ресурсов.
preview
Нейросети в трейдинге: Модели многократного уточнения прогнозов (Основные компоненты)

Нейросети в трейдинге: Модели многократного уточнения прогнозов (Основные компоненты)

В статье мы раскрываем внутреннюю механику фреймворка RAFT — одного из самых точных и элегантных подходов к анализу динамических процессов. Мы шаг за шагом адаптируем его идею итеративного уточнения под финансовые временные ряды, создавая прочный фундамент для будущей модели. Читателя ждёт живое погружение в архитектуру, где каждый компонент имеет свой смысл и функцию.