Статьи по программированию и использованию торговых роботов на языке MQL5

icon

Эксперты, созданные для платформы MetaTrader, выполняют самые разнообразные функции, задуманные их разработчиками. Торговые роботы могут отслеживать множество финансовых инструментов 24 часа в сутки, копировать сделки, создавать и отсылать отчеты, анализировать новости и даже предоставлять трейдеру собственный графический интерфейс, разработанный по его заказу.

В статьях предлагаются приемы программирования, математические идеи по обработке данных, советы по созданию и заказу торговых роботов.

Новая статья
последние | лучшие
preview
Теория категорий в MQL5 (Часть 17): Функторы и моноиды

Теория категорий в MQL5 (Часть 17): Функторы и моноиды

Это последняя статья серии, посвященная функторам. В ней мы вновь рассматриваем моноиды как категорию. Моноиды, которые мы уже представили в этой серии, используются здесь для помощи в определении размера позиции вместе с многослойными перцептронами.
preview
Нейросети в трейдинге: Гиперболическая модель латентной диффузии (Окончание)

Нейросети в трейдинге: Гиперболическая модель латентной диффузии (Окончание)

Применение анизотропных диффузионных процессов для кодирования исходных данных в гиперболическом латентном пространстве, как это предложено в фреймворке HypDIff, способствует сохранению топологических особенностей текущей рыночной ситуации, и повышает качество её анализа. В предыдущей статье мы начали реализацию предложенных подходов средствами MQL5. И сегодня продолжим начатую работу, доведя ее до логического завершения.
preview
Нейросети в трейдинге: Двойная кластеризация временных рядов (Окончание)

Нейросети в трейдинге: Двойная кластеризация временных рядов (Окончание)

Продолжаем реализацию подходов, предложенных авторами фреймворка DUET, который предлагает инновационный подход к анализу временных рядов, сочетая временную и канальную кластеризацию для выявления скрытых закономерностей в анализируемых данных.
preview
Нейросети в трейдинге: Иерархическое обучение признаков облака точек

Нейросети в трейдинге: Иерархическое обучение признаков облака точек

Продолжаем изучение алгоритмов для извлечения признаков из облака точек. И в данной статье мы познакомимся с механизмами повышения эффективности метода PointNet.
preview
Использование JSON Data API в MQL-проектах

Использование JSON Data API в MQL-проектах

Представьте, что вы можете использовать данные, которых нет в MetaTrader. Обычно вы получаете информацию только от индикаторов, основанных на анализе цен и техническом анализе. Теперь представьте, что у вас есть доступ к данным, которые выведут ваши торговые возможности на новый уровень. Вы можете значительно увеличить мощность платформы MetaTrader, если объедините её возможности с результатами работы других программ, методов макроанализа и ультрасовременных инструментов через API. В этой статье мы расскажем, как использовать API, и представим полезные и ценные API-сервисы.
preview
Шаблоны проектирования в программировании на MQL5 (Часть 3): Поведенческие шаблоны 1

Шаблоны проектирования в программировании на MQL5 (Часть 3): Поведенческие шаблоны 1

В новая статье серии, посвященной шаблонам проектирования, мы рассмотрим поведенческие шаблоны, чтобы понять, как эффективно создавать методы взаимодействия между созданными объектами. Спроектировав эти шаблоны поведения, мы сможем понять, как создавать многоразовое, расширяемое и тестируемое программное обеспечение.
preview
Создание советника на MQL5 на основе стратегии PIRANHA с использованием Полос Боллинджера

Создание советника на MQL5 на основе стратегии PIRANHA с использованием Полос Боллинджера

В настоящей статье мы создаем советника (EA) на MQL5 на основе стратегии PIRANHA, использующего Полосы Боллинджера для повышения эффективности торговли. Мы обсуждаем ключевые принципы стратегии, реализацию кода, а также методы тестирования и оптимизации. Эти знания позволят эффективно использовать советник в ваших торговых сценариях
preview
Нейросети в трейдинге: Повышение эффективности Transformer путем снижения резкости (Окончание)

Нейросети в трейдинге: Повышение эффективности Transformer путем снижения резкости (Окончание)

SAMformer предлагает решение ключевых проблем Transformer в долгосрочном прогнозировании временных рядов, включая сложность обучения и слабое обобщение на малых выборках. Его неглубокая архитектура и оптимизация с учетом резкости обеспечивают избегание плохих локальных минимумов. В данной статье мы продолжим реализацию подходов с использованием MQL5 и оценим их практическую ценность.
preview
Нейросети в трейдинге: Параметроэффективный Transformer с сегментированным вниманием (PSformer)

Нейросети в трейдинге: Параметроэффективный Transformer с сегментированным вниманием (PSformer)

Предлагаем познакомиться с новым фреймворком PSformer, который адаптирует архитектуру ванильного Transformer для решения задач прогнозирования многомерных временных рядов. В основе фреймворка лежат две ключевые инновации: механизм совместного использования параметров (PS) и внимание к пространственно-временным сегментам (SegAtt).
preview
Нейросети в трейдинге: Мультимодальный агент, дополненный инструментами (Окончание)

Нейросети в трейдинге: Мультимодальный агент, дополненный инструментами (Окончание)

Продолжаем работу по реализации алгоритмов мультимодального агента для финансовой торговли FinAgent, предназначенного для анализа мультимодальных данных рыночной динамики и исторических торговых паттернов.
preview
Модифицированный советник Grid-Hedge в MQL5 (Часть III): Оптимизация простой хеджирующей стратегии (I)

Модифицированный советник Grid-Hedge в MQL5 (Часть III): Оптимизация простой хеджирующей стратегии (I)

В третьей части мы вернемся к советникам Simple Hedge и Simple Grid, разработанным ранее. Теперь мы займемся совершенствованием советника Simple Hedge с помощью математического анализа и подхода грубой силы (brute force) с целью оптимального использования стратегии. Эта статья углубляется в математическую оптимизацию стратегии, закладывая основу для будущего исследования оптимизации на основе кода в последующих частях.
preview
Машинное обучение и Data Science (Часть 25): Прогнозирование временных рядов на форексе с помощью рекуррентных нейросетей (RNN)

Машинное обучение и Data Science (Часть 25): Прогнозирование временных рядов на форексе с помощью рекуррентных нейросетей (RNN)

Рекуррентные нейронные сети (RNN) ценятся за способность использовать прошлую информацию для прогнозирования будущих событий. Такие прогностические возможности с успехом применяются в различных областях. В этой статье мы применим модели RNN для прогнозирования трендов на рынке Форекс. Посмотрим, смогут ли они повысить точность прогнозирования в трейдинге.
preview
Нейросети в трейдинге: Гибридный торговый фреймворк с предиктивным кодированием (StockFormer)

Нейросети в трейдинге: Гибридный торговый фреймворк с предиктивным кодированием (StockFormer)

Предлагаем познакомиться с гибридной торговой системой StockFormer, которая объединят предиктивное кодирование и алгоритмы обучения с подкреплением (RL). Во фреймворке используются 3 ветви Transformer с интегрированным механизмом Diversified Multi-Head Attention (DMH-Attn), который улучшает ванильный модуль внимания за счет многоголового блока Feed-Forward, что позволяет захватывать разнообразные паттерны временных рядов в разных подпространствах.
preview
Разметка данных в анализе временных рядов (Часть 6):Применение и тестирование советника с помощью ONNX

Разметка данных в анализе временных рядов (Часть 6):Применение и тестирование советника с помощью ONNX

В этой серии статей представлены несколько методов разметки временных рядов, которые могут создавать данные, соответствующие большинству моделей искусственного интеллекта (ИИ). Целевая разметка данных может сделать обученную модель ИИ более соответствующей пользовательским целям и задачам, повысить точность модели и даже помочь модели совершить качественный скачок!
preview
Создание самооптимизирующихся советников на языках MQL5 и Python

Создание самооптимизирующихся советников на языках MQL5 и Python

В этой статье обсудим, как можно создать советник, способный самостоятельно выбирать и менять торговые стратегии в зависимости от преобладающих на рынке условий. Познакомимся с цепями Маркова и с их возможностями с точки зрения пользы для нас, алготрейдеров.
preview
Введение в MQL5 (Часть 5): Функции для работы с массивами для начинающих

Введение в MQL5 (Часть 5): Функции для работы с массивами для начинающих

В пятой статье из нашей серии мы познакомимся с миром массивов в MQL5. Статья предназначена для начинающих. В статье попытаемся упрощенно рассмотреть сложные концепции программирования, чтобы материал был понятен всем. Давайте вместе будем изучать основные концепции, обсуждать вопросы и делиться знаниями!
preview
Создаем простой мультивалютный советник с использованием MQL5 (Часть 3): Префиксы/суффиксы символов и торговая сессия

Создаем простой мультивалютный советник с использованием MQL5 (Часть 3): Префиксы/суффиксы символов и торговая сессия

Я получил комментарии от нескольких коллег-трейдеров о том, как использовать рассматриваемый мной мультивалютный советник у брокеров, использующих префиксы и/или суффиксы с именами символов, а также о том, как реализовать в советнике торговые часовые пояса или торговые сессии.
preview
Нейросети — это просто (Часть 94): Оптимизация последовательности исходных данных

Нейросети — это просто (Часть 94): Оптимизация последовательности исходных данных

При работе с временными рядами мы всегда используем исходные данные в их исторической последовательности. Но является ли это оптимальным вариантом? Существует мнение, что изменение последовательности исходных данных позволит повысить эффективность обучаемых моделей. В данной статье я предлагаю вам познакомиться с одним из таких методов.
preview
Объединение стратегий фундаментального и технического анализа на языке MQL5 для начинающих

Объединение стратегий фундаментального и технического анализа на языке MQL5 для начинающих

В этой статье обсудим, как эффективно интегрировать следование тренду и фундаментальные принципы в один советник для создания более надежной стратегии. Статья продемонстрирует, насколько просто любой желающий может приступить к созданию собственных торговых алгоритмов с помощью языка MQL5.
preview
Шаблоны проектирования в MQL5 (Часть 2): Структурные шаблоны

Шаблоны проектирования в MQL5 (Часть 2): Структурные шаблоны

В этой статье мы продолжим изучать шаблоны проектирования, которые позволяют разработчикам создавать расширяемые и надежные приложений не только на MQL5, но и на других языках программирования. В этот раз мы поговорим о другом типе — о структурных шаблонах. Будем учиться проектировать системы, используя имеющиеся классы для формирования более крупных структур.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 12): Полином Ньютона

Возможности Мастера MQL5, которые вам нужно знать (Часть 12): Полином Ньютона

Полином Ньютона, который создает квадратные уравнения из набора нескольких точек, представляет собой архаичный, но интересный подход к рассмотрению временных рядов. В этой статье мы попытаемся изучить, какие аспекты этого подхода могут быть полезны трейдерам, а также устранить его ограничения.
preview
Введение в MQL5 (Часть 6): Функции для работы с массивами для начинающих (II)

Введение в MQL5 (Часть 6): Функции для работы с массивами для начинающих (II)

Продолжим изучение возможностей языка программирования MQL5. В этой статье, предназначенной для начинающих, мы продолжим изучать функции для работы массивами, перейдя к более сложным концепциям, которые обязательно пригодятся при разработке эффективных торговых стратегий. В этот раз познакомимся с функциями ArrayPrint, ArrayInsert, ArraySize, ArrayRange, ArrarRemove, ArraySwap, ArrayReverse и ArraySort. Функции массивы знать обязательно, если вы хотите достичь высокого уровня в области алготрейдинга. Это очередная глава на пути к мастерству.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 11): Числовые стены

Возможности Мастера MQL5, которые вам нужно знать (Часть 11): Числовые стены

Числовые стены (Number Walls) — это вариант регистра сдвига с линейной обратной связью (Linear Shift Back Registers), который предварительно оценивает последовательности на предмет предсказуемости путем проверки на сходимость. Мы посмотрим, как эти идеи могут быть использованы в MQL5.
preview
Реализация торговой стратегии на основе полос Боллинджера с помощью MQL5: Пошаговое руководство

Реализация торговой стратегии на основе полос Боллинджера с помощью MQL5: Пошаговое руководство

Пошаговое руководство по реализации на MQL5 алгоритма автоматической торговли, основанной на торговой стратегии «Полосы Боллинджера». Подробное учебное пособие на основе создания советника, который может быть полезен трейдерам.
preview
MQL5-советник, интегрированный в Telegram (Часть 3): Отправка скриншотов графиков с подписями из MQL5 в Telegram

MQL5-советник, интегрированный в Telegram (Часть 3): Отправка скриншотов графиков с подписями из MQL5 в Telegram

В этой статье мы создадим советник MQL5, который кодирует скриншоты графиков в виде графических данных и отправляет их в чат Telegram посредством HTTP-запросов. Внедрив кодирование и передачу изображений, мы улучшим существующую систему MQL5-Telegram путем добавления визуальной торговой аналитики непосредственно в Telegram.
preview
Как построить советник, работающий автоматически (Часть 11): Автоматизация (III)

Как построить советник, работающий автоматически (Часть 11): Автоматизация (III)

Автоматизированная система без соответствующей безопасности не будет успешной. Однако безопасность не будет обеспечена без хорошего понимания некоторых вещей. В этой статье мы разберемся с тем, почему достижение максимальной безопасности в автоматизированных системах является такой сложной задачей.
preview
Нейросети в трейдинге: Оптимизация LSTM для целей прогнозирования многомерных временных рядов (DA-CG-LSTM)

Нейросети в трейдинге: Оптимизация LSTM для целей прогнозирования многомерных временных рядов (DA-CG-LSTM)

Статья знакомит с алгоритмом DA-CG-LSTM, который предлагает новые подходы к анализу временных рядов и их прогнозированию. Из нее вы узнаете, как инновационные механизмы внимания и гибкость модели позволяют улучшить точность прогнозов.
preview
Построение модели для ограничения диапазона сигналов по тренду (Часть 5): Система уведомлений (Часть II)

Построение модели для ограничения диапазона сигналов по тренду (Часть 5): Система уведомлений (Часть II)

В статье подробно рассматривается интеграция уведомлений индикаторов MetaTrader 5 в Telegram с использованием возможностей MQL5, Python и API Telegram Bot. Вы сможете применить полученную информацию в своих проектах.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 26): Скользящие средние и показатель Херста

Возможности Мастера MQL5, которые вам нужно знать (Часть 26): Скользящие средние и показатель Херста

Показатель Херста — это мера того, насколько сильно временной ряд автокоррелирует в долгосрочной перспективе. Предполагается, что он отражает долгосрочные свойства временного ряда и поэтому имеет определенный вес в анализе временных рядов даже за пределами экономических/финансовых временных рядов. Однако мы сосредоточимся на его потенциальной пользе для трейдеров, изучив, как этот показатель можно объединить со скользящими средними для формирования потенциально надежного сигнала.
preview
Как интегрировать в советник концепции Smart Money (BOS) в сочетании с индикатором RSI

Как интегрировать в советник концепции Smart Money (BOS) в сочетании с индикатором RSI

Концепция Smart Money (Break of Structure) в сочетании с индикатором RSI для принятия обоснованных решений в автоматической торговле на основе структуры рынка.
preview
Добавляем пользовательскую LLM в торгового робота (Часть 4): Обучение собственной LLM с помощью GPU

Добавляем пользовательскую LLM в торгового робота (Часть 4): Обучение собственной LLM с помощью GPU

Языковые модели (LLM) являются важной частью быстро развивающегося искусственного интеллекта, поэтому нам следует подумать о том, как интегрировать мощные LLM в нашу алгоритмическую торговлю. Большинству людей сложно настроить эти модели в соответствии со своими потребностями, развернуть их локально, а затем применить к алгоритмической торговле. В этой серии статей будет рассмотрен пошаговый подход к достижению этой цели.
preview
Нейросети в трейдинге: Изучение локальной структуры данных

Нейросети в трейдинге: Изучение локальной структуры данных

Эффективное выявление и сохранение локальной структуры рыночных данных в условиях шума является важной задачей в трейдинге. Использование механизма Self-Attention показало хорошие результаты в обработке подобных данных, но классический метод не учитывают локальные особенности исходной структуры. В данной статье я предлагаю познакомиться с алгоритмом, способным учитывать эти структурные зависимости.
preview
Нейросети в трейдинге: Использование языковых моделей для прогнозирования временных рядов

Нейросети в трейдинге: Использование языковых моделей для прогнозирования временных рядов

Мы продолжаем рассмотрения моделей прогнозирования временных рядов. И в данной статье я предлагаю познакомиться с комплексным алгоритмом, построенным на использовании предварительно обученной языковой модели.
preview
Разметка данных в анализе временных рядов (Часть 4): Декомпозиция интерпретируемости с использованием разметки данных

Разметка данных в анализе временных рядов (Часть 4): Декомпозиция интерпретируемости с использованием разметки данных

В этой серии статей представлены несколько методов разметки временных рядов, которые могут создавать данные, соответствующие большинству моделей искусственного интеллекта (ИИ). Целевая разметка данных может сделать обученную модель ИИ более соответствующей пользовательским целям и задачам, повысить точность модели и даже помочь модели совершить качественный скачок!
preview
Нейросети в трейдинге: Иерархический векторный Transformer (HiVT)

Нейросети в трейдинге: Иерархический векторный Transformer (HiVT)

Предлагаем познакомиться с методом Иерархический Векторный Transformer (HiVT), который был разработан для быстрого и точного прогнозирования мультимодальных временных рядов.
preview
Нейросети в трейдинге: Мультиагентная адаптивная модель (MASA)

Нейросети в трейдинге: Мультиагентная адаптивная модель (MASA)

Предлагаю познакомиться с мультиагентным адаптивным фреймворком MASA, который объединяет обучение с подкреплением и адаптивные стратегии, обеспечивая гармоничный баланс между доходностью и управлением рисками в турбулентных рыночных условиях.
preview
Формулировка динамического советника на нескольких парах (Часть 1): Корреляция и обратная корреляция валютных пар

Формулировка динамического советника на нескольких парах (Часть 1): Корреляция и обратная корреляция валютных пар

Динамический советник на нескольких парах использует как корреляционные, так и обратные корреляционные стратегии для оптимизации эффективности торговли. Анализируя рыночные данные в режиме реального времени, он определяет и использует взаимосвязь между валютными парами.
preview
Нейросети в трейдинге: Эффективное извлечение признаков для точной классификации (Окончание)

Нейросети в трейдинге: Эффективное извлечение признаков для точной классификации (Окончание)

Фреймворк Mantis превращает сложные временные ряды в информативные токены и служит надёжным фундаментом для интеллектуального торгового Агента, готового работать в реальном времени.
preview
Нейросети — это просто (Часть 96): Многоуровневое извлечение признаков (MSFformer)

Нейросети — это просто (Часть 96): Многоуровневое извлечение признаков (MSFformer)

Эффективное извлечение и объединение долгосрочных зависимостей и краткосрочных характеристик остаются важной задачей в анализе временных рядов. Правильное их понимание и интеграция необходимы для создания точных и надежных предсказательных моделей.
preview
Разрабатываем мультивалютный советник (Часть 25): Подключаем новую стратегию (II)

Разрабатываем мультивалютный советник (Часть 25): Подключаем новую стратегию (II)

В данной статье продолжим подключить новую стратегию к созданной системе автоматической оптимизации. Посмотрим, какие изменения потребуется внести в советник создания проекта оптимизации и советники второго и третьего этапов.