Реализация торговой стратегии на основе полос Боллинджера с помощью MQL5: Пошаговое руководство
Пошаговое руководство по реализации на MQL5 алгоритма автоматической торговли, основанной на торговой стратегии «Полосы Боллинджера». Подробное учебное пособие на основе создания советника, который может быть полезен трейдерам.
Фильтр сезонности и временные периоды в моделях глубокого обучения с ONNX и Python в советнике
Можем ли мы извлечь выгоду из сезонности при создании моделей для глубокого обучения с помощью Python? Помогает ли фильтрация данных в моделях ONNX получить лучшие результаты? Какой период времени использовать? Обо всем этом расскажем в этой статье.
MQL5-советник, интегрированный в Telegram (Часть 3): Отправка скриншотов графиков с подписями из MQL5 в Telegram
В этой статье мы создадим советник MQL5, который кодирует скриншоты графиков в виде графических данных и отправляет их в чат Telegram посредством HTTP-запросов. Внедрив кодирование и передачу изображений, мы улучшим существующую систему MQL5-Telegram путем добавления визуальной торговой аналитики непосредственно в Telegram.
Нейросети в трейдинге: Контрастный Трансформер паттернов
Контрастный Transformer паттернов осуществляет анализ рыночных ситуаций, как на уровне отдельных свечей, так и целых паттернов. Что способствует повышению качества моделирования рыночных тенденций. А применение контрастного обучения для согласования представлений свечей и паттернов ведет к саморегуляции и повышению точности прогнозов.
Нейросети — это просто (Часть 90): Частотная интерполяция временных рядов (FITS)
При изучении метода FEDformer мы приоткрыли дверь в частотную область представления временного ряда. В новой статье мы продолжим начатую тему. И рассмотрим метод, позволяющий не только проводить анализ, но и прогнозировать последующие состояния в частной области.
Нейросети в трейдинге: Адаптивное представление графов (NAFS)
Предлагаем познакомиться с методом NAFS (Node-Adaptive Feature Smoothing) — это непараметрический подход к созданию представлений узлов, который не требует обучения параметров. NAFS извлекает характеристики каждого узла, учитывая его соседей, и затем адаптивно комбинирует эти характеристики для формирования конечного представления.
Нейросети в трейдинге: Пространственно-временная нейронная сеть (STNN)
В данной статье мы поговорим об использовании пространственно-временных преобразований для эффективного прогнозирования предстоящего ценового движения. Для повышения точности численного прогнозирования в STNN был предложен механизм непрерывного внимания, который позволяет модели лучше учитывать важные аспекты данных.
Как функции столетней давности могут обновить ваши торговые стратегии
В этой статье речь пойдет о функциях Радемахера и Уолша. Мы исследуем способы применения этих функций для анализа финансовых временных рядов, а также рассмотрим различные варианты их применения в трейдинге.
Как построить советник, работающий автоматически (Часть 10): Автоматизация (II)
Автоматизация ничего не значит, если вы не можете контролировать расписание его работы. Ни один работник не может быть эффективным при работе 24 часа в сутки. Несмотря на этот факт, многие считают, что автоматизированная система должна работать 24 часа в сутки. Хорошо всегда иметь возможность задавать временной интервал для эксперта. В этой статье мы обсудим, как правильно установить такой временной интервал.
Разметка данных в анализе временных рядов (Часть 5):Применение и тестирование советника с помощью Socket
В этой серии статей представлены несколько методов разметки временных рядов, которые могут создавать данные, соответствующие большинству моделей искусственного интеллекта (ИИ). Целевая разметка данных может сделать обученную модель ИИ более соответствующей пользовательским целям и задачам, повысить точность модели и даже помочь модели совершить качественный скачок!
Нейросети — это просто (Часть 95): Снижение потребления памяти в моделях Transformer
Модели на основе архитектуры Transformer демонстрируют высокую эффективность, однако их использование осложняется большими затратами ресурсов как на этапе обучения, так и в процессе эксплуатации. В этой статье я предлагаю познакомиться с алгоритмами, которые позволяют уменьшить использование памяти такими моделями.
Нейросети в трейдинге: Двойная кластеризация временных рядов (Окончание)
Продолжаем реализацию подходов, предложенных авторами фреймворка DUET, который предлагает инновационный подход к анализу временных рядов, сочетая временную и канальную кластеризацию для выявления скрытых закономерностей в анализируемых данных.
Добавляем пользовательскую LLM в торгового робота (Часть 4): Обучение собственной LLM с помощью GPU
Языковые модели (LLM) являются важной частью быстро развивающегося искусственного интеллекта, поэтому нам следует подумать о том, как интегрировать мощные LLM в нашу алгоритмическую торговлю. Большинству людей сложно настроить эти модели в соответствии со своими потребностями, развернуть их локально, а затем применить к алгоритмической торговле. В этой серии статей будет рассмотрен пошаговый подход к достижению этой цели.
Нейросети в трейдинге: Комплексный метод прогнозирования траекторий (Traj-LLM)
В данной статье я хочу познакомить вас с одним интересным методом прогнозирования траекторий, разработанным для решения задач в области автономного движения транспортных средств. Авторы метода объединили в нем лучшие элементы различных архитектурных решений.
Нейросети в трейдинге: Оптимизация LSTM для целей прогнозирования многомерных временных рядов (DA-CG-LSTM)
Статья знакомит с алгоритмом DA-CG-LSTM, который предлагает новые подходы к анализу временных рядов и их прогнозированию. Из нее вы узнаете, как инновационные механизмы внимания и гибкость модели позволяют улучшить точность прогнозов.
Создаем простой мультивалютный советник с использованием MQL5 (Часть 3): Префиксы/суффиксы символов и торговая сессия
Я получил комментарии от нескольких коллег-трейдеров о том, как использовать рассматриваемый мной мультивалютный советник у брокеров, использующих префиксы и/или суффиксы с именами символов, а также о том, как реализовать в советнике торговые часовые пояса или торговые сессии.
Нейросети — это просто (Часть 76): Изучение разнообразных режимов взаимодействия (Multi-future Transformer)
В данной статье мы продолжаем тему прогнозирования предстоящего ценового движения. И предлагаю Вам познакомиться с архитектурой Multi-future Transformer. Основная идея которого заключается в разложении мультимодального распределение будущего на несколько унимодальных распределений, что позволяет эффективно моделировать разнообразные модели взаимодействия между агентами на сцене.
Разметка данных в анализе временных рядов (Часть 6):Применение и тестирование советника с помощью ONNX
В этой серии статей представлены несколько методов разметки временных рядов, которые могут создавать данные, соответствующие большинству моделей искусственного интеллекта (ИИ). Целевая разметка данных может сделать обученную модель ИИ более соответствующей пользовательским целям и задачам, повысить точность модели и даже помочь модели совершить качественный скачок!
Создание самооптимизирующихся советников на языках MQL5 и Python
В этой статье обсудим, как можно создать советник, способный самостоятельно выбирать и менять торговые стратегии в зависимости от преобладающих на рынке условий. Познакомимся с цепями Маркова и с их возможностями с точки зрения пользы для нас, алготрейдеров.
Как интегрировать в советник концепции Smart Money (BOS) в сочетании с индикатором RSI
Концепция Smart Money (Break of Structure) в сочетании с индикатором RSI для принятия обоснованных решений в автоматической торговле на основе структуры рынка.
Нейросети в трейдинге: Мультиагентная адаптивная модель (MASA)
Предлагаю познакомиться с мультиагентным адаптивным фреймворком MASA, который объединяет обучение с подкреплением и адаптивные стратегии, обеспечивая гармоничный баланс между доходностью и управлением рисками в турбулентных рыночных условиях.
Введение в MQL5 (Часть 6): Функции для работы с массивами для начинающих (II)
Продолжим изучение возможностей языка программирования MQL5. В этой статье, предназначенной для начинающих, мы продолжим изучать функции для работы массивами, перейдя к более сложным концепциям, которые обязательно пригодятся при разработке эффективных торговых стратегий. В этот раз познакомимся с функциями ArrayPrint, ArrayInsert, ArraySize, ArrayRange, ArrarRemove, ArraySwap, ArrayReverse и ArraySort. Функции массивы знать обязательно, если вы хотите достичь высокого уровня в области алготрейдинга. Это очередная глава на пути к мастерству.
Разработка интерактивного графического пользовательского интерфейса на MQL5 (Часть 2): Добавление элементов управления и адаптивности
Расширение панели графического интерфейса на MQL5 с помощью динамических функций может существенно улучшить торговый опыт пользователей. Благодаря включению интерактивных элементов, эффектов наведения и обновлению данных в реальном времени эта панель становится мощным инструментом современного трейдера.
От новичка до эксперта: Раскрываем скрытые уровни коррекции Фибоначчи
В настоящей статье мы рассмотрим основанный на данных подход к обнаружению и проверке нестандартных уровней коррекции Фибоначчи, которые могут учитываться рынками. Мы представляем полный рабочий процесс, адаптированный для реализации на MQL5, начиная со сбора данных и определения баров или колебаний и заканчивая кластеризацией, проверкой статистических гипотез, бэктестингом и интеграцией в инструмент Фибоначчи на MetaTrader 5. Цель состоит в том, чтобы создать воспроизводимый конвейер, преобразующий отдельные наблюдения в статистически обоснованные торговые сигналы.
Квантовая нейросеть на MQL5 (Часть III): Виртуальный квантовый процессор с кубитами
Создаем торговую систему с настоящим квантовым симулятором вместо математических аналогий. Система использует 3 виртуальных кубита, квантовые гейты и принципы суперпозиции для анализа рынков. Реализована как торговый советник для MetaTrader 5 на MQL5. Главное достижение — переход от имитации к реальным квантовым принципам обработки финансовой информации.
Добавляем пользовательскую LLM в торгового робота (Часть 5): Разработка и тестирование торговой стратегии с помощью LLM (I) - Тонкая настройка
Языковые модели (LLM) являются важной частью быстро развивающегося искусственного интеллекта, поэтому нам следует подумать о том, как интегрировать мощные LLM в нашу алгоритмическую торговлю. Большинству людей сложно настроить эти модели в соответствии со своими потребностями, развернуть их локально, а затем применить к алгоритмической торговле. В этой серии статей будет рассмотрен пошаговый подход к достижению этой цели.
Модифицированный советник Grid-Hedge в MQL5 (Часть III): Оптимизация простой хеджирующей стратегии (I)
В третьей части мы вернемся к советникам Simple Hedge и Simple Grid, разработанным ранее. Теперь мы займемся совершенствованием советника Simple Hedge с помощью математического анализа и подхода грубой силы (brute force) с целью оптимального использования стратегии. Эта статья углубляется в математическую оптимизацию стратегии, закладывая основу для будущего исследования оптимизации на основе кода в последующих частях.
Нейросети в трейдинге: Иерархическое обучение признаков облака точек
Продолжаем изучение алгоритмов для извлечения признаков из облака точек. И в данной статье мы познакомимся с механизмами повышения эффективности метода PointNet.
Нейросети в трейдинге: Параметроэффективный Transformer с сегментированным вниманием (PSformer)
Предлагаем познакомиться с новым фреймворком PSformer, который адаптирует архитектуру ванильного Transformer для решения задач прогнозирования многомерных временных рядов. В основе фреймворка лежат две ключевые инновации: механизм совместного использования параметров (PS) и внимание к пространственно-временным сегментам (SegAtt).
Нейросети в трейдинге: Гибридный торговый фреймворк с предиктивным кодированием (StockFormer)
Предлагаем познакомиться с гибридной торговой системой StockFormer, которая объединят предиктивное кодирование и алгоритмы обучения с подкреплением (RL). Во фреймворке используются 3 ветви Transformer с интегрированным механизмом Diversified Multi-Head Attention (DMH-Attn), который улучшает ванильный модуль внимания за счет многоголового блока Feed-Forward, что позволяет захватывать разнообразные паттерны временных рядов в разных подпространствах.
Торговый инструментарий MQL5 (Часть 2): Расширение и применение EX5-библиотеки для управления позициями
Узнайте, как импортировать и использовать EX5-библиотеки в вашем коде или проектах MQL5. В этой статье мы расширим ранее созданную EX5-библиотеку, добавив больше функций управления позициями и создав два советника. В первом примере будет использоваться технический индикатор Variable Index Dynamic Average для разработки советника по стратегии трейлинг-стопа, а во втором - торговая панель для мониторинга, открытия, закрытия и изменения позиций. Эти два примера продемонстрируют, как использовать обновленную EX5-библиотеку для управления позициями.
Создание Python-классов для торговли в MetaTrader 5, аналогичных представленным в MQL5
Python-пакет MetaTrader 5 предлагает простой способ создания торговых приложений для платформы MetaTrader 5 на языке Python. Будучи мощным и полезным инструментом данный модуль не так прост как язык программирования MQL5, когда дело касается разработки решений для алгоритмической торговли. В данной статье мы создадим классы для торговли, аналогичные предлагаемым в языке MQL5, чтобы создать схожий синтаксис и сделать разработку торговых роботов на Python такой же простой как и на MQL5.
Шаблоны проектирования в MQL5 (Часть 2): Структурные шаблоны
В этой статье мы продолжим изучать шаблоны проектирования, которые позволяют разработчикам создавать расширяемые и надежные приложений не только на MQL5, но и на других языках программирования. В этот раз мы поговорим о другом типе — о структурных шаблонах. Будем учиться проектировать системы, используя имеющиеся классы для формирования более крупных структур.
Объединение стратегий фундаментального и технического анализа на языке MQL5 для начинающих
В этой статье обсудим, как эффективно интегрировать следование тренду и фундаментальные принципы в один советник для создания более надежной стратегии. Статья продемонстрирует, насколько просто любой желающий может приступить к созданию собственных торговых алгоритмов с помощью языка MQL5.
Нейросети в трейдинге: Мультимодальный агент, дополненный инструментами (Окончание)
Продолжаем работу по реализации алгоритмов мультимодального агента для финансовой торговли FinAgent, предназначенного для анализа мультимодальных данных рыночной динамики и исторических торговых паттернов.
Нейросети в трейдинге: Гиперболическая модель латентной диффузии (Окончание)
Применение анизотропных диффузионных процессов для кодирования исходных данных в гиперболическом латентном пространстве, как это предложено в фреймворке HypDIff, способствует сохранению топологических особенностей текущей рыночной ситуации, и повышает качество её анализа. В предыдущей статье мы начали реализацию предложенных подходов средствами MQL5. И сегодня продолжим начатую работу, доведя ее до логического завершения.
Теория категорий в MQL5 (Часть 17): Функторы и моноиды
Это последняя статья серии, посвященная функторам. В ней мы вновь рассматриваем моноиды как категорию. Моноиды, которые мы уже представили в этой серии, используются здесь для помощи в определении размера позиции вместе с многослойными перцептронами.
Шаблоны проектирования в программировании на MQL5 (Часть 3): Поведенческие шаблоны 1
В новая статье серии, посвященной шаблонам проектирования, мы рассмотрим поведенческие шаблоны, чтобы понять, как эффективно создавать методы взаимодействия между созданными объектами. Спроектировав эти шаблоны поведения, мы сможем понять, как создавать многоразовое, расширяемое и тестируемое программное обеспечение.
Нейросети в трейдинге: Повышение эффективности Transformer путем снижения резкости (Окончание)
SAMformer предлагает решение ключевых проблем Transformer в долгосрочном прогнозировании временных рядов, включая сложность обучения и слабое обобщение на малых выборках. Его неглубокая архитектура и оптимизация с учетом резкости обеспечивают избегание плохих локальных минимумов. В данной статье мы продолжим реализацию подходов с использованием MQL5 и оценим их практическую ценность.
Нейросети — это просто (Часть 94): Оптимизация последовательности исходных данных
При работе с временными рядами мы всегда используем исходные данные в их исторической последовательности. Но является ли это оптимальным вариантом? Существует мнение, что изменение последовательности исходных данных позволит повысить эффективность обучаемых моделей. В данной статье я предлагаю вам познакомиться с одним из таких методов.