Построение модели для ограничения диапазона сигналов по тренду (Часть 9): Советник с несколькими стратегиями (II)
Количество стратегий, которые можно интегрировать в виде советника, практически безгранично. Однако каждая дополнительная стратегия увеличивает сложность алгоритма. Благодаря использованию нескольких стратегий советник может лучше адаптироваться к изменяющимся рыночным условиям, что потенциально повышает его прибыльность. Сегодня мы рассмотрим, как реализовать в MQL5 одну из выдающихся стратегий, разработанных Ричардом Дончианом, продолжая при этом совершенствовать функциональность нашего советника Trend Constraint.
Возможности Мастера MQL5, которые вам нужно знать (Часть 12): Полином Ньютона
Полином Ньютона, который создает квадратные уравнения из набора нескольких точек, представляет собой архаичный, но интересный подход к рассмотрению временных рядов. В этой статье мы попытаемся изучить, какие аспекты этого подхода могут быть полезны трейдерам, а также устранить его ограничения.
Возможности Мастера MQL5, которые вам нужно знать (Часть 11): Числовые стены
Числовые стены (Number Walls) — это вариант регистра сдвига с линейной обратной связью (Linear Shift Back Registers), который предварительно оценивает последовательности на предмет предсказуемости путем проверки на сходимость. Мы посмотрим, как эти идеи могут быть использованы в MQL5.
MQL5-советник, интегрированный в Telegram (Часть 5): Отправка команд из Telegram в MQL5 и получение ответов в реальном времени
В этой статье мы создадим несколько классов для облегчения взаимодействия в реальном времени между MQL5 и Telegram. Мы займемся извлечением команд из Telegram, их декодированием и интерпретацией, а также отправкой соответствующих ответов. Под конец мы протестируем эти взаимодействия и убедимся в их правильной работе в торговой среде.
Построение модели для ограничения диапазона сигналов по тренду (Часть 5): Система уведомлений (Часть II)
В статье подробно рассматривается интеграция уведомлений индикаторов MetaTrader 5 в Telegram с использованием возможностей MQL5, Python и API Telegram Bot. Вы сможете применить полученную информацию в своих проектах.
Торгуем опционы без опционов (Часть 3): Сложные опционные стратегии
Рассматриваются флэтовые (не направленные) и трендовые (направленные) опционные стратегии и их реализация на MQL5. Модернизируется эксперт, написанный в предыдущей статье. Добавляется отображение опционных уровней. Теперь пора рассмотреть работу и реализовать те стратегии, которые используются на практике опционными трейдерами.
Нейросети в трейдинге: Использование языковых моделей для прогнозирования временных рядов
Мы продолжаем рассмотрения моделей прогнозирования временных рядов. И в данной статье я предлагаю познакомиться с комплексным алгоритмом, построенным на использовании предварительно обученной языковой модели.
Разработка динамического советника на нескольких парах (Часть 1): Корреляция и обратная корреляция валютных пар
Динамический советник на нескольких парах использует как корреляционные, так и обратные корреляционные стратегии для оптимизации эффективности торговли. Анализируя рыночные данные в режиме реального времени, он определяет и использует взаимосвязь между валютными парами.
Создание советника на MQL5 на основе стратегии Прорыва дневного диапазона (Daily Range Breakout)
В настоящей статье мы создаём советника на MQL5 на основе стратегии Прорыва дневного диапазона (Daily Range Breakout). Мы рассмотрим ключевые концепции стратегии, разработаем схему советника и реализуем логику прорыва на MQL5. В конце мы изучаем методы бэк-тестирования и оптимизации советника, чтобы максимально повысить его эффективность.
Введение в MQL5 (часть 9): Использование объектов на графике
В этой статье мы научимся создавать и настраивать объекты графиков в MQL5, используя текущие и исторические данные. Здесь также представлено практическое руководство, с которым вы сможете отображать сделки на графике и использовать другие объекты MQL5 на практике.
Возможности Мастера MQL5, которые вам нужно знать (Часть 26): Скользящие средние и показатель Херста
Показатель Херста — это мера того, насколько сильно временной ряд автокоррелирует в долгосрочной перспективе. Предполагается, что он отражает долгосрочные свойства временного ряда и поэтому имеет определенный вес в анализе временных рядов даже за пределами экономических/финансовых временных рядов. Однако мы сосредоточимся на его потенциальной пользе для трейдеров, изучив, как этот показатель можно объединить со скользящими средними для формирования потенциально надежного сигнала.
Реализация торговой стратегии Rapid-Fire с использованием индикаторов Parabolic SAR и простой скользящей средней (SMA) на MQL5
В настоящей статье мы разрабатываем торговый советник Rapid-Fire на MQL5, используя индикаторы Parabolic SAR и простую скользящую среднюю (SMA) для создания гибкой торговой стратегии. Мы подробно описываем реализацию стратегии, включая использование индикаторов, генерацию сигналов, а также процесс тестирования и оптимизации.
Нейросети в трейдинге: Эффективное извлечение признаков для точной классификации (Окончание)
Фреймворк Mantis превращает сложные временные ряды в информативные токены и служит надёжным фундаментом для интеллектуального торгового Агента, готового работать в реальном времени.
Квантовая нейросеть на MQL5 (Часть I): Создаем включаемый файл
Статья представляет новый подход к созданию торговых систем на основе квантовых принципов и искусственного интеллекта. Автор описывает разработку уникальной нейронной сети, которая выходит за рамки классического машинного обучения, объединяя квантовую механику с современными архитектурами ИИ.
Разметка данных в анализе временных рядов (Часть 4): Декомпозиция интерпретируемости с использованием разметки данных
В этой серии статей представлены несколько методов разметки временных рядов, которые могут создавать данные, соответствующие большинству моделей искусственного интеллекта (ИИ). Целевая разметка данных может сделать обученную модель ИИ более соответствующей пользовательским целям и задачам, повысить точность модели и даже помочь модели совершить качественный скачок!
Нейросети в трейдинге: Иерархический векторный Transformer (HiVT)
Предлагаем познакомиться с методом Иерархический Векторный Transformer (HiVT), который был разработан для быстрого и точного прогнозирования мультимодальных временных рядов.
Нейросети в трейдинге: Изучение локальной структуры данных
Эффективное выявление и сохранение локальной структуры рыночных данных в условиях шума является важной задачей в трейдинге. Использование механизма Self-Attention показало хорошие результаты в обработке подобных данных, но классический метод не учитывают локальные особенности исходной структуры. В данной статье я предлагаю познакомиться с алгоритмом, способным учитывать эти структурные зависимости.
Как построить советник, работающий автоматически (Часть 11): Автоматизация (III)
Автоматизированная система без соответствующей безопасности не будет успешной. Однако безопасность не будет обеспечена без хорошего понимания некоторых вещей. В этой статье мы разберемся с тем, почему достижение максимальной безопасности в автоматизированных системах является такой сложной задачей.
Нейросети в трейдинге: Параметроэффективный Transformer с сегментированным вниманием (Окончание)
В предыдущей работе мы рассмотрели теоретические аспекты фреймворка PSformer, который включает две основные инновации в архитектуру классического Transformer: механизм совместного использования параметров (Parameter Shared — PS) и внимание к пространственно-временным сегментам (SegAtt). И в данной статье мы продолжаем начатую работу по реализации предложенных подходов средствами MQL5.
Разрабатываем мультивалютный советник (Часть 29): Доработка конвейера
Повышаем удобство работы с конвейером автоматической оптимизации: попробуем пройти путь от создания проекта оптимизации до теста итогового советника. Для наглядности промоделируем по шагам весь процесс создания итогового советника, останавливаясь для внесения желаемых исправлений.
Стратегии торговли прорыва: разбор ключевых методов
Стратегии прорыва диапазона открытия (Opening Range Breakout, ORB) основаны на идее о том, что начальный торговый диапазон, установленный вскоре после открытия рынка, отражает значимые уровни цен, когда покупатели и продавцы договариваются о стоимости. Выявляя прорывы определенного диапазона вверх или вниз, трейдеры могут извлекать выгоду из моментума, который часто возникает, когда направление рынка становится более отчетливым. В этой статье рассмотрим три стратегии ORB, адаптированные из материалов компании Concretum Group.
Нейросети — это просто (Часть 96): Многоуровневое извлечение признаков (MSFformer)
Эффективное извлечение и объединение долгосрочных зависимостей и краткосрочных характеристик остаются важной задачей в анализе временных рядов. Правильное их понимание и интеграция необходимы для создания точных и надежных предсказательных моделей.
Построение модели для ограничения диапазона сигналов по тренду (Часть 2): Объединение нативных индикаторов
В статье рассматривается использование встроенных индикаторов MetaTrader 5 для отсеивания нетрендовых сигналов. Продолжая предыдущую статью, мы рассмотрим, как это сделать с помощью кода MQL5, чтобы воплотить нашу идею в виде программы.
Стратегия торговли каскадами ордеров на основе пересечений EMA для MetaTrader 5
В статье представлен автоматизированный алгоритм на основе пересечений EMA для MetaTrader 5. Подробная информация обо всех аспектах демонстрации советника на языке MQL5 и его тестирования в MetaTrader 5, от анализа характеристик ценового диапазона до управления рисками.
Нейросети в трейдинге: Ансамбль агентов с использованием механизмов внимания (MASAAT)
Предлагаем познакомиться с мультиагентной адаптивной структурой оптимизации финансового портфеля (MASAAT), которая объединяет механизмы внимания и анализ временных рядов. MASAAT формирует множество агентов, которые анализируют ценовые ряды и направленные изменения, позволяя выявлять значимые колебания цен активов на различных уровнях детализации.
Нейросети в трейдинге: Прогнозирование временных рядов при помощи адаптивного модального разложения (Окончание)
В статье рассматривается адаптация и практическая реализация фреймворка ACEFormer средствами MQL5 в контексте алгоритмической торговли. Показаны ключевые архитектурные решения, особенности обучения и результаты тестирования модели на реальных данных.
Возможности Мастера MQL5, которые вам нужно знать (Часть 39): Индекс относительной силы
RSI — популярный импульсный осциллятор, который измеряет темп и размер недавнего изменения цены ценной бумаги для оценки ситуаций переоценки или недооценки ее цены. Эти знания о скорости и масштабах имеют ключевое значение для определения точек разворота. Мы применим этот осциллятор в работе очередного пользовательского класса сигналов и изучим особенности некоторых из его сигналов. Однако начнем мы с того, что подведем итог нашему разговору о полосах Боллинджера.
Автоматизация торговых стратегий на MQL5 (Часть 10): Разработка стратегии Trend Flat Momentum
В настоящей статье мы разрабатываем советник на MQL5 для стратегии Trend Flat Momentum. Мы комбинируем пересечение двух скользящих средних с фильтрами импульса RSI и CCI для генерации торговых сигналов. Также рассказываем о тестировании на истории и потенциальных улучшениях для повышения эффективности в реальных условиях.
Теория категорий в MQL5 (Часть 22): Другой взгляд на скользящие средние
В этой статье мы попытаемся упростить описание концепций, рассматриваемых в этой серии, остановившись только на одном индикаторе - наиболее распространенном и, вероятно, самом легком для понимания. Речь идет о скользящей средней. Также мы рассмотрим значение и возможные применения вертикальных естественных преобразований.
Разрабатываем мультивалютный советник (Часть 21): Подготовка к важному эксперименту и оптимизация кода
Для дальнейшего продвижения хорошо было бы посмотреть, можем ли мы улучшить результаты, периодически выполняя повторную автоматическую оптимизацию и генерирование нового советника. Камнем преткновения во многих спорах об использовании оптимизации параметров является вопрос о том, насколько долго можно использовать полученные параметры для торговли в будущем периоде с сохранением основных показателей прибыльности и просадки на заданных уровнях. И можно ли вообще это делать?
Возможности Мастера MQL5, которые вам нужно знать (Часть 23): CNN
Свёрточные нейронные сети (Convolutional Neural Networks, CNNs) — ещё один алгоритм машинного обучения, который, как правило, специализируется на разложении многомерных наборов данных на ключевые составные части. Мы рассмотрим принцип его работы и исследуем возможное применение для трейдеров в очередном классе сигналов Мастера MQL5.
Альтернативные показатели риска и доходности в MQL5
В этой статье мы представим реализацию нескольких показателей доходности и риска, рассматриваемых как альтернативы коэффициенту Шарпа, и исследуем гипотетические кривые капитала для анализа их характеристик.
От новичка до эксперта: Торговля с использованием уровней Фибоначчи после публикации NFP
На финансовых рынках законы коррекции остаются одними из самых неоспоримых факторов. Существует эмпирическое правило, что цена всегда будет возвращаться — будь то большими движениями или даже в рамках самых маленьких тиковых паттернов, которые часто выглядят как зигзаг. Однако сам паттерн ретрейсмент никогда не бывает фиксированным; он остается неопределенным и подверженным ожиданиям. Эта неопределенность объясняет, почему трейдеры полагаются на несколько уровней Фибоначчи, каждый из которых обладает определенной вероятностью влияния.
Возможности Мастера MQL5, которые вам нужно знать (Часть 10): Нетрадиционная RBM
Ограниченные машины Больцмана (Restrictive Boltzmann Machines, RBM) представляют собой на базовом уровне двухслойную нейронную сеть, способную выполнять неконтролируемую классификацию посредством уменьшения размерности. Мы используем ее основные принципы и посмотрим что случится, если мы перепроектируем и обучим ее нестандартно. Сможем ли мы получить полезный фильтр сигналов?
MQL5-советник, интегрированный в Telegram (Часть 6): Добавление адаптивных встроенных кнопок
В этой статье мы интегрируем интерактивные встроенные кнопки в MQL5-советник, что позволяет осуществлять управление в режиме реального времени через Telegram. Каждое нажатие кнопки запускает определенные действия и отправляет ответы обратно пользователю. Мы также создадим функции для эффективной обработки Telegram-сообщений и callback-запросов.
Нейросети в трейдинге: Снижение потребления памяти методом оптимизации Adam (Adam-mini)
Одним из направлений повышения эффективности процесса обучения и сходимости моделей является улучшение методов оптимизации. Adam-mini представляет собой адаптивный метод оптимизации, разработанный для улучшения базового алгоритма Adam.
Нейросети в трейдинге: Transformer для облака точек (Pointformer)
В данной статье мы поговорим об алгоритмах использования методов внимания при решении задач обнаружения объектов в облаке точек. Обнаружение объектов в облаках точек имеет важное значение для многих реальных приложений.
Нейросети в трейдинге: Мультиагентная адаптивная модель (Окончание)
В предыдущей статье мы познакомились с мультиагентным адаптивным фреймворком MASA, который объединяет подходы обучения с подкреплением и адаптивные стратегии, обеспечивая гармоничный баланс между доходностью и рисками в турбулентных рыночных условиях. Нами был построен функционал отдельных агентов данного фреймворка, и в этой статье мы продолжим начатую работу, доведя её до логического завершения.
MQL5-советник, интегрированный в Telegram (Часть 7): Анализ команд для автоматизации индикаторов на графиках
В этой статье мы узнаем, как интегрировать команды Telegram с MQL5 для автоматизации добавления индикаторов на торговые графики. Мы рассмотрим процесс анализа пользовательских команд, их выполнение на языке MQL5 и тестирование системы для обеспечения бесперебойной торговли на основе индикаторов.
Строим и оптимизируем торговую систему, основанную на объемах торгов (Chaikin Money Flow - CMF)
В настоящей статье мы представим основанный на объемах индикатор денежного потока Чайкина (Chaikin Money Flow, CMF) после того, как узнаем, как его можно построить, рассчитать и использовать. Разберемся как создать пользовательский индикатор. Проанализируем несколько простых стратегий, которые можно использовать и протестируем их, чтобы понять, какая стратегия лучше.