Статьи по программированию и использованию торговых роботов на языке MQL5

icon

Эксперты, созданные для платформы MetaTrader, выполняют самые разнообразные функции, задуманные их разработчиками. Торговые роботы могут отслеживать множество финансовых инструментов 24 часа в сутки, копировать сделки, создавать и отсылать отчеты, анализировать новости и даже предоставлять трейдеру собственный графический интерфейс, разработанный по его заказу.

В статьях предлагаются приемы программирования, математические идеи по обработке данных, советы по созданию и заказу торговых роботов.

Новая статья
последние | лучшие
preview
Разработка пользовательского индикатора True Strength Index с помощью MQL5

Разработка пользовательского индикатора True Strength Index с помощью MQL5

Представляю новую статью о том, как создать пользовательский индикатор. На этот раз мы будем работать с индексом истинной силы - True Strength Index (TSI) и создадим советник на его основе.
preview
Нейросети — это просто (Часть 38): Исследование с самоконтролем через несогласие (Self-Supervised Exploration via Disagreement)

Нейросети — это просто (Часть 38): Исследование с самоконтролем через несогласие (Self-Supervised Exploration via Disagreement)

Одной из основных проблем обучения с подкреплением является исследование окружающей среды. Ранее мы уже познакомились с методом исследования на базе внутреннего любопытства. Сегодня я предлагаю посмотреть на ещё один алгоритм — исследование через несогласие.
preview
Создавать графические панели в MQL5 стало проще

Создавать графические панели в MQL5 стало проще

В этой статье мы предоставим простое и понятное руководство для всех, кто хочет создать один из самых ценных и полезных инструментов в трейдинге — графическую панель, упрощающую выполнение торговых задач. Графические панели позволяют сэкономить время и больше сосредоточиться на самой торговле.
preview
Нейросети — это просто (Часть 62): Использование Трансформера решений в иерархических моделях

Нейросети — это просто (Часть 62): Использование Трансформера решений в иерархических моделях

В последних статьях мы познакомились с несколькими вариантами использования метода Decision Transformer. Который позволяет анализировать не только текущее состояние, но и траекторию предшествующих состояний и, совершенных в них, действий. В данной статье я предлагаю Вам познакомиться с вариантом использования данного метода в иерархических моделях.
preview
Нейросети — это просто (Часть 39): Go-Explore — иной подход к исследованию

Нейросети — это просто (Часть 39): Go-Explore — иной подход к исследованию

Продолжаем тему исследования окружающей среды в моделях обучения с подкреплением. И данной статье мы рассмотрим ещё один алгоритм Go-Explore, который позволяет эффективно исследовать окружающую среду на стадии обучения модели.
preview
Разрабатываем мультивалютный советник (Часть 9): Сбор результатов оптимизации одиночных экземпляров торговой стратегии

Разрабатываем мультивалютный советник (Часть 9): Сбор результатов оптимизации одиночных экземпляров торговой стратегии

Наметим основные этапы по разработке нашего советника. Одним из первых будет проведение оптимизации одиночного экземпляра разработанной торговой стратегии. Попробуем собрать в одном месте всю необходимую информацию о проходах тестера при оптимизации.
preview
Нейросети — это просто (Часть 23): Создаём инструмент для Transfer Learning

Нейросети — это просто (Часть 23): Создаём инструмент для Transfer Learning

В данной серии статей мы уже не один раз упоминали о Transfer Learning. Но дальше упоминаний пока дело не шло. Я предлагаю заполнить этот пробел и посмотреть поближе на Transfer Learning.
preview
Разработка торгового советника с нуля (Часть 25): Обеспечиваем надежность системы (II)

Разработка торгового советника с нуля (Часть 25): Обеспечиваем надежность системы (II)

В этой статье мы сделаем финальный рывок к производительности советника... так что будьте готовы к долгому чтению. Чтобы сделать наш советник надежным, мы сначала удалим из кода всё, что не является частью торговой системы.
preview
Прогнозирование на основе глубокого обучения и открытие ордеров с помощью пакета MetaTrader 5 python и файла модели ONNX

Прогнозирование на основе глубокого обучения и открытие ордеров с помощью пакета MetaTrader 5 python и файла модели ONNX

Проект предполагает использование Python для прогнозирования на финансовых рынках на основе глубокого обучения. Мы изучим тонкости тестирования производительности модели с использованием таких ключевых показателей, как средняя абсолютная ошибка (MAE), средняя квадратичная ошибка (MSE) и R-квадрат (R2), а также научимся объединять это всё в исполняемом файле. Мы также создадим файл модели ONNX и советник.
preview
Может ли Heiken Ashi давать хорошие сигналы в сочетании со скользящими средними?

Может ли Heiken Ashi давать хорошие сигналы в сочетании со скользящими средними?

Комбинации стратегий могут повысить эффективность торговли. Мы можем комбинировать индикаторы и паттерны, чтобы получать дополнительные подтверждения. Скользящие средние помогают нам подтвердить тренд и следовать ему. Это самые известный технический индикатор, что объясняется его простотой и доказанной эффективностью анализа.
preview
Циклы и трейдинг

Циклы и трейдинг

Эта статья посвящена использованию циклов в трейдинге. В ней мы постараемся разобраться, как можно построить торговую стратегию, основываясь на циклических моделях.
preview
Нейросети — это просто (Часть 71): Прогнозирование будущих состояний с учетом поставленных целей (GCPC)

Нейросети — это просто (Часть 71): Прогнозирование будущих состояний с учетом поставленных целей (GCPC)

В предыдущих работах мы познакомились с методом Decision Transformer и несколькими производными от него алгоритмами. Мы экспериментировали с различными методами постановки цели. В процессе экспериментов мы работали с различными способами постановки целей, однако изучение моделью уже пройденной траектории всегда оставалось вне нашего внимания. В данной статье я хочу познакомить Вас с методом, который заполняет этот пробел.
preview
Нейросети — это просто (Часть 63): Предварительное обучение Трансформера решений без учителя (PDT)

Нейросети — это просто (Часть 63): Предварительное обучение Трансформера решений без учителя (PDT)

Продолжаем рассмотрение семейства методов Трансформера решений. Из предыдущих работ мы уже заметили, что обучение трансформера, лежащего в основе архитектуры данных методов, довольно сложная задача и требует большого количества размеченных обучающих данных. В данной статье мы рассмотрим алгоритм использования не размеченных траекторий для предварительного обучения моделей.
preview
Разрабатываем мультивалютный советник (Часть 4): Отложенные виртуальные ордера и сохранение состояния

Разрабатываем мультивалютный советник (Часть 4): Отложенные виртуальные ордера и сохранение состояния

Приступив к разработке мультивалютного советника мы уже достигли некоторых результатов и успели провести несколько итераций улучшения кода. Однако наш советник не мог работать с отложенными ордерами и возобновлять работу после перезапуска терминала. Давайте добавим эти возможности.
preview
Нейросети — это просто (Часть 66): Проблематика исследования в офлайн обучении

Нейросети — это просто (Часть 66): Проблематика исследования в офлайн обучении

Обучение моделей в офлайн режиме осуществляется на данных ранее подготовленной обучающей выборки. Это дает нам ряд преимуществ, но при этом информация об окружающей среде сильно сжимается до размеров обучающей выборки. Что, в свою очередь, ограничивает возможности исследования. В данной статье хочу предложить познакомиться с методом, позволяющем наполнить обучающую выборку максимально разнообразными данными.
preview
Нейросети в трейдинге: Анализ рыночной ситуации с использованием Трансформера паттернов

Нейросети в трейдинге: Анализ рыночной ситуации с использованием Трансформера паттернов

В анализе рыночной ситуации нашими моделями ключевым элементом является свеча. Тем не менее давно известно, что свечные паттерны могут помочь в прогнозировании будущих ценовых движений. И в этой статье мы познакомимся с методом, который позволяет интегрировать оба этих подхода.
Видео: Простая автоматизированная торговля – Как создать простой торговый советник с помощью MQL5
Видео: Простая автоматизированная торговля – Как создать простой торговый советник с помощью MQL5

Видео: Простая автоматизированная торговля – Как создать простой торговый советник с помощью MQL5

Большинство слушателей моих курсов считали, что язык MQL5 сложен для понимания. Кроме того, они искали простые способы автоматизации некоторых процессов. В этой статье вы узнаете как сходу начать работать в MQL5 даже без навыков программирования и даже если в прошлом у вас уже были неудачные попытки освоить эту тему.
preview
Нейросети — это просто (Часть 59): Дихотомия контроля (Dichotomy of Control — DoC)

Нейросети — это просто (Часть 59): Дихотомия контроля (Dichotomy of Control — DoC)

В предыдущей статье мы познакомились с Трансформером решений. Но сложная стохастическая среда валютного рынка не позволила в полной мере раскрыть потенциал представленного метода. Сегодня я хочу представить Вам алгоритм, который направлен на повышение производительности алгоритмов в стохастических средах.
preview
Торговая стратегия на индикаторе улучшенного распознавания свечей Доджи

Торговая стратегия на индикаторе улучшенного распознавания свечей Доджи

Индикатор на метабарах обнаруживал больше свечей чем классический. Проверим, дает ли это реальную пользу в автоматической торговле.
preview
Нейросети — это просто (Часть 48): Методы снижения переоценки значений Q-функции

Нейросети — это просто (Часть 48): Методы снижения переоценки значений Q-функции

В предыдущей статье мы познакомились с методом DDPG, который позволяет обучать модели в непрерывном пространстве действий. Однако, как и другие методы Q-обучения, DDPG склонен к переоценки значений Q-функции. Эта проблема часто приводит к обучению агента с неоптимальной стратегией. В данной статье мы рассмотрим некоторые подходы преодоления упомянутой проблемы.
preview
Нейросети — это просто (Часть 85): Многомерное прогнозирование временных рядов

Нейросети — это просто (Часть 85): Многомерное прогнозирование временных рядов

В данной статье хочу познакомить Вас с новым комплексным методом прогнозирования временных рядов, который гармонично сочетает в себе преимущества линейных моделей и трансформеров.
preview
Использование алгоритмов оптимизации для настройки параметров советника "на лету"

Использование алгоритмов оптимизации для настройки параметров советника "на лету"

В статье рассматриваются практические аспекты использования алгоритмов оптимизации для поиска наилучших параметров советников "на лету", виртуализация торговых операций и логики советника. Данная статья может быть использована как своеобразная инструкция для внедрения алгоритмов оптимизации в торгового советника.
preview
Нейросети — это просто (Часть 69): Ограничение политики поведения на основе плотности офлайн данных (SPOT)

Нейросети — это просто (Часть 69): Ограничение политики поведения на основе плотности офлайн данных (SPOT)

В оффлайн обучении мы используем фиксированный набор данных, что ограничивает покрытие разнообразия окружающей среды. В процессе обучения наш Агент может генерировать действия вне этого набора. При отсутствии обратной связи от окружающей среды корректность оценок таких действий вызывает вопросы. Поддержание политики Агента в пределах обучающей выборки становится важным аспектом для обеспечения надежности обучения. Об этом мы и поговорим в данной статье.
preview
Разработка торговой системы на основе индикатора Накопления/Распределения - Accumulation/Distribution

Разработка торговой системы на основе индикатора Накопления/Распределения - Accumulation/Distribution

Представляю вашему вниманию новую статью из серии, в которой мы учимся создавать торговые системы на основе популярных технических индикаторов. В этой статье мы будем изучать индикатор Накопления/Распределения (Accumulation/Distribution, A/D). Также мы разработаем торговую систему на языке MQL5 для работы в платформе MetaTrader 5, используя несколько простых стратегий.
preview
Разработка торгового советника с нуля (Часть 21): Новая система ордеров (IV)

Разработка торгового советника с нуля (Часть 21): Новая система ордеров (IV)

Наконец-то визуальная система заработает... хотя пока не до конца. Здесь мы закончим вносить основные изменения, которых будет не мало, но они все необходимы, и вся работа будет достаточно интересной.
preview
Брутфорс-подход к поиску закономерностей (Часть V): Взгляд с другой стороны

Брутфорс-подход к поиску закономерностей (Часть V): Взгляд с другой стороны

В статье я покажу совершенно иной подход к алготрейдингу, к которому мне пришлось прийти спустя достаточно длительное время. Конечно же все это связано с моей брутфорс программой, которая претерпела ряд изменений, которые позволяют ей решать одновременно несколько задач. Тем не менее статья получилась больше общей и максимально простой, по этому годится и для тех кто не в теме или просто проходил мимо.
preview
Нейросети — это просто (Часть 54): Использование случайного энкодера для эффективного исследования (RE3)

Нейросети — это просто (Часть 54): Использование случайного энкодера для эффективного исследования (RE3)

Каждый раз, при рассмотрении методов обучения с подкреплением, мы сталкиваемся с вопросом эффективного исследования окружающей среды. Решение данного вопроса часто приводит к усложнению алгоритма и обучению дополнительных моделей. В данной статье мы рассмотрим альтернативный подход к решению данной проблемы.
preview
Нейросети — это просто (Часть 60): Онлайн Трансформер решений (Online Decision Transformer—ODT)

Нейросети — это просто (Часть 60): Онлайн Трансформер решений (Online Decision Transformer—ODT)

Последние 2 статьи были посвящены методу Decision Transformer, который моделирует последовательности действий в контексте авторегрессионной модели желаемых вознаграждений. В данной статье мы рассмотрим ещё один алгоритм оптимизации данного метода.
preview
Нейросети — это просто (Часть 42): Прокрастинация модели, причины и методы решения

Нейросети — это просто (Часть 42): Прокрастинация модели, причины и методы решения

Прокрастинация модели в контексте обучения с подкреплением может быть вызвана несколькими причинами, и решение этой проблемы требует принятия соответствующих мер. В статье рассмотрены некоторые из возможных причин прокрастинации модели и методы их преодоления.
preview
Несколько индикаторов на графике (Часть 05): Превращаем MetaTrader 5 в систему RAD (I)

Несколько индикаторов на графике (Часть 05): Превращаем MetaTrader 5 в систему RAD (I)

Несмотря на то, что многие люди не умеют программировать, они достаточно креативны и имеют отличные идеи, но отсутствие знаний или понимания программирования мешает им сделать некоторые вещи. Давайте посмотрим вместе, как создать Chart Trade, но используя саму платформу MT5, как будто это IDE.
preview
Разработка и тестирование торговых систем Aroon

Разработка и тестирование торговых систем Aroon

В этой статье мы узнаем, как построить торговую систему Aroon, изучив основы индикаторов и необходимые шаги для создания торговой системы на основе индикатора Aroon. После создания этой торговой системы мы проверим, может ли она быть прибыльной или требует дополнительной оптимизации.
preview
Нейросети — это просто (Часть 49): Мягкий Актор-Критик (Soft Actor-Critic)

Нейросети — это просто (Часть 49): Мягкий Актор-Критик (Soft Actor-Critic)

Мы продолжаем рассмотрение алгоритмов обучения с подкреплением в решении задач непрерывного пространства действий. И в данной статье предлагаю познакомиться с алгоритмом Soft Аctor-Critic (SAC). Основное преимущество SAC заключается в способности находить оптимальные политики, которые не только максимизируют ожидаемую награду, но и имеют максимальную энтропию (разнообразие) действий.
preview
Нейросети в трейдинге: Практические результаты метода TEMPO

Нейросети в трейдинге: Практические результаты метода TEMPO

Продолжаем знакомство с методом TEMPO. И в данной статье мы оценим фактическую эффективность предложенных подходов на реальных исторических данных.
preview
Нейросети — это просто (Часть 70): Улучшение политики с использованием операторов в закрытой форме (CFPI)

Нейросети — это просто (Часть 70): Улучшение политики с использованием операторов в закрытой форме (CFPI)

В этой статье мы предлагаем познакомиться с алгоритмом, который использует операторы улучшения политики в закрытой форме для оптимизации действий Агента в офлайн режиме.
preview
Нейросети — это просто (Часть 74): Адаптивное прогнозирование траекторий

Нейросети — это просто (Часть 74): Адаптивное прогнозирование траекторий

Предлагаю Вам познакомиться с довольно эффективным методом многоагентного прогнозирования траекторий, который способен адаптироваться к различным состояниям окружающей среды.
preview
Нейросети — это просто (Часть 83): Алгоритм пространственно-временного преобразователя постоянного внимания (Conformer)

Нейросети — это просто (Часть 83): Алгоритм пространственно-временного преобразователя постоянного внимания (Conformer)

Предлагаемый Вашему вниманию алгоритм Conformer был разработан для целей прогнозирования погоды, которую по изменчивости и капризности можно сравнить с финансовыми рынками. Conformer является комплексным методом. И сочетает в себе преимущества моделей внимания и обычных дифференциальных уравнений.
preview
Нейросети — это просто (Часть 15): Кластеризации данных средствами MQL5

Нейросети — это просто (Часть 15): Кластеризации данных средствами MQL5

Продолжаем рассмотрение метода кластеризации. В данной статье мы создадим новый класс CKmeans для реализации одного из наиболее распространённых методов кластеризации k-средних. По результатам тестирования модель смогла выделить около 500 паттернов.
preview
Нейросети — это просто (Часть 61): Проблема оптимизма в офлайн обучении с подкреплением

Нейросети — это просто (Часть 61): Проблема оптимизма в офлайн обучении с подкреплением

В процессе офлайн обучения мы оптимизируем политику Агента по данным обучающей выборки. Полученная стратегия придает Агенту уверенность в его действиях. Однако такой оптимизм не всегда оправдан и может привести к увеличению рисков в процессе эксплуатации модели. Сегодня мы рассмотрим один из методов снижения этих рисков.
preview
Нейросети — это просто (Часть 40): Подходы к использованию Go-Explore на большом объеме данных

Нейросети — это просто (Часть 40): Подходы к использованию Go-Explore на большом объеме данных

В данной статье обсуждается применение алгоритма Go-Explore на протяжении длительного периода обучения, так как стратегия случайного выбора действий может не привести к прибыльному проходу с увеличением времени обучения.
preview
Прогнозирование с помощью моделей ARIMA в MQL5

Прогнозирование с помощью моделей ARIMA в MQL5

В этой статье мы продолжаем разработку класса CArima для построения моделей ARIMA, добавляя интуитивно понятные методы прогнозирования.