人工生態系ベースの最適化(AEO)アルゴリズム
この記事では、初期の解候補集団を生成し、適応的な更新戦略を適用することで、生態系構成要素間の相互作用を模倣するメタヒューリスティック手法、人工エコシステムベース最適化(AEO: Artificial Ecosystem-based Optimization)アルゴリズムについて検討します。AEOの動作過程として、消費フェーズや分解フェーズ、さらに多様なエージェント行動戦略など、各段階を詳細に説明します。あわせて、本アルゴリズムの特徴と利点についても紹介します。
リプレイシステムの開発(第40回):第2段階の開始(I)
今日は、リプレイ/シミュレーターシステムの新しい段階について話しましょう。この段階で、会話は本当に面白くなり、内容もかなり濃くなります。記事を熟読し、そこに掲載されているリンクを利用することを強くお勧めします。そうすることで、内容をより深く理解することができます。
母集団最適化アルゴリズム:ボイドアルゴリズム
この記事では、動物の群れ行動のユニークな例に基づいたボイドアルゴリズムについて考察しています。その結果、ボイドアルゴリズムは、「群知能(Swarm Intelligence)」の名の下に統合されたアルゴリズム群全体の基礎となった。
知っておくべきMQL5ウィザードのテクニック(第29回):MLPの学習率についての続き
エキスパートアドバイザー(EA)のパフォーマンスに対する学習率の感度を、主に適応学習率を調べることでまとめます。これらの学習率は、訓練の過程で層の各パラメータごとにカスタマイズすることを目的としており、潜在的な利点と期待されるパフォーマンスの差を評価します。
人工蜂の巣アルゴリズム(ABHA):テストと結果
この記事では、人工蜂の巣アルゴリズム(ABHA)の探索を続け、コードの詳細を掘り下げるとともに、残りのメソッドについて考察します。ご存じのとおり、このモデルにおける各蜂は個別のエージェントとして表現されており、その行動は内部情報、外部情報、および動機付けの状態に依存します。さまざまな関数を用いてアルゴリズムをテストし、その結果を評価表としてまとめて提示します。
スイングエントリーモニタリングEAの開発
年末が近づくと、多くの長期トレーダーは市場の過去を振り返り、その動きや傾向を分析して、将来の動向を予測しようとします。この記事では、MQL5を用いて長期エントリーの監視をおこなうエキスパートアドバイザー(EA)の開発について解説します。手動取引や自動監視システムの不在によって、長期的な取引チャンスを逃してしまうという課題に取り組むことが本稿の目的です。今回は、特に取引量の多い通貨ペアの一つを例に挙げ、効果的な戦略を立案しながらソリューションを構築していきます。
MQL5で取引管理者パネルを作成する(第11回):最新機能通信インターフェース(I)
本日は、コミュニケーションパネルのメッセージングインターフェースを、現代の高性能なコミュニケーションアプリの標準に合わせて強化することに焦点を当てます。この改善は、CommunicationsDialogクラスの更新によって実現されます。この記事とディスカッションでは、主要な知見を紹介しつつ、MQL5を用いたインターフェースプログラミングの次のステップを整理していきます。
リプレイシステムの開発(第51回):物事は複雑になる(III)
この記事では、MQL5プログラミングの分野で最も難解な問題の1つである、チャートIDを正しく取得する方法と、オブジェクトがチャートにプロットされない場合がある理由について解説します。ここで提供される資料は教育目的のみに使用されるべきです。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを閲覧することは避けてください。
プライスアクション分析ツールキットの開発(第13回):RSIセンチネルツール
プライスアクションは、ダイバージェンスを特定することで効果的に分析することができます。RSI(相対力指数)などのテクニカル指標は、その確認シグナルとして重要な役割を果たします。本記事では、自動化されたRSIダイバージェンス分析によって、トレンドの継続や反転をどのように識別できるかを解説し、市場心理を読み解く上で理解を深める手助けをします。
リプレイシステムの開発(第69回):正しい時間を知る(II)
今日は、iSpread機能がなぜ必要なのかについて考察します。同時に、ティックが1つも存在しない状況で、システムがどのようにバーの残り時間を通知するのかについても理解を深めていきます。ここで提示されるコンテンツは、教育目的のみに使用されることを意図しています。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを利用することは避けてください。
リプレイシステムの開発(第33回):発注システム(II)
今日も発注システムの開発を続けます。ご覧のように、他の記事ですでに紹介したものを大量に再利用することになります。とはいえ、この記事にはささやかなご褒美があります。まず、デモ口座からでもリアル口座からでも、取引サーバーで使えるシステムを開発します。MetaTrader 5プラットフォームを幅広く活用し、当初から必要なサポートをすべて提供します。
MQL5における相関分析の要素:ピアソンのカイ二乗検定による独立性と相関比
この記事では相関分析の古典的なツールについて考察します。簡潔な理論的背景と、ピアソンのカイ二乗独立性検定および相関比の実践的な実装に重点が置かれています。
MetaTrader 5のPythonでMQL5のような取引クラスを構築する
MetaTrader 5のPythonパッケージは、Python言語でMetaTrader 5プラットフォーム用の取引アプリケーションを構築する簡単な方法を提供しますが、強力で有用なツールである一方で、アルゴリズム取引ソリューションを作成する際にはMQL5プログラミング言語ほど容易ではありません。本記事では、MQL5で提供されているものに類似した取引クラスを構築し、類似した構文を作成することで、MQL5と同様にPythonで自動売買ロボットをより簡単に作成できるようにします。
MQL5での取引戦略の自動化(第28回):視覚的フィードバックによるプライスアクションバットハーモニックパターンの作成
本記事では、MQL5で弱気と強気の両方のバット(Bat)ハーモニックパターンを、ピボットポイントとフィボナッチ比率を用いて識別し、正確なエントリー、ストップロス、テイクプロフィットレベルを用いて取引を自動化するバットパターンシステムを開発し、チャートオブジェクトによる視覚的フィードバックを強化します。
PythonとMQL5による多銘柄分析(第2回):ポートフォリオ最適化のための主成分分析
取引口座のリスク管理は、すべてのトレーダーにとっての課題です。MetaTrader 5で、さまざまな銘柄に対して高リスク、中リスク、低リスクモードを動的に学習する取引アプリケーションを開発するにはどうすればよいでしょうか。PCA(主成分分析)を使用することで、ポートフォリオの分散をより効果的に管理できるようになります。MetaTrader 5から取得した市場データを基に、これら3つのリスクモードを学習するアプリケーションの作成方法を説明します。
リプレイシステムの開発(第64回):サービスの再生(V)
この記事では、コード内の2つのエラーを修正する方法について説明します。ただし、初心者プログラマーの皆さんに、物事が必ずしも期待どおりに進むとは限らないことを理解してもらえるよう、できるだけわかりやすく解説したいと思います。いずれにせよ、これは学びの機会です。ここで提示されるコンテンツは、教育目的のみに使用されることを意図しています。ここで紹介する内容は教育目的のみに限定されており、提示された概念を探求すること以外の目的でこのアプリケーションを最終的な文書と見なすべきではありません。
リプレイシステムの開発 - 市場シミュレーション(第22回):FOREX (III)
このトピックに関する記事は今回で3回目になりますが、株式市場とFOREX市場の違いをまだ理解していない方のために説明しなければなりません。大きな違いは、FOREXでは、取引の過程で実際に発生したいくつかのポイントに関する情報がないというか、与えられないということです。
リプレイシステムの開発(第34回):発注システム (III)
今回は、構築の第一段階を完成させます。この部分はかなり短時間で終わりますが、前回までに説明しなかった詳細をカバーします。多くの方が理解していない点をいくつか説明します。なぜShiftキーやCtrlキーを押さなければならないかご存じでしょうか。
リプレイシステムの開発(第77回):新しいChart Trade (IV)
この記事では、通信プロトコルを作成する際に考慮すべきいくつかの対策や注意点について説明します。内容は比較的シンプルでわかりやすいものなので、詳細には触れません。しかし、この記事の内容を理解することで、今後の展開が把握しやすくなります。
PythonとMQL5を使用した特徴量エンジニアリング(第2回):価格の角度
MQL5フォーラムには、価格変動の傾斜を計算する方法についての支援を求める投稿が多数あります。この記事では、取引したい市場における価格の変化によって形成される角度を計算する1つの方法を説明します。さらに、この新しい特徴量の設計に追加の労力と時間を投資する価値があるかどうかについてもお答えします。M1でUSDZARペアを予測する際に、価格の傾斜によってAIモデルの精度が向上するかどうかを調査します。
彗尾アルゴリズム(CTA)
この記事では、ユニークな宇宙物体である彗星と、太陽に接近する際に形成されるその印象的な尾にインスパイアされた「彗尾最適化アルゴリズム(CTA: Comet Tail Algorithm)」について考察します。このアルゴリズムは、彗星とその尾の運動の概念に基づき、最適化問題の最適解を見つけることを目的としています。
リプレイシステムの開発(第56回):モジュールの適応
モジュール同士はすでに適切に連携していますが、リプレイサービスでマウスポインタを使用しようとするとエラーが発生します。次のステップに進む前に、この問題を修正する必要があります。さらに、マウスインジケーターのコードにある別の問題も修正します。この修正によって、今回のバージョンは最終的に安定し、洗練されたものになります。
知っておくべきMQL5ウィザードのテクニック(第31回):損失関数の選択
損失関数は、機械学習アルゴリズムの重要な指標です。これは、与えられたパラメータセットが目標に対してどれだけうまく機能しているかを定量的に評価し、学習プロセスにフィードバックを提供する役割を果たします。本記事では、MQL5のカスタムウィザードクラスを使って、損失関数のさまざまな形式を探っていきます。
雲モデル最適化(ACMO):実践編
この記事では、ACMO(Atmospheric Cloud Model Optimization:雲モデル最適化)アルゴリズムの実装について、さらに詳しく掘り下げていきます。特に、低気圧領域への雲の移動および水滴の初期化と雲間での分布を含む降雨シミュレーションという2つの重要な側面に焦点を当てます。また、雲の状態を管理し、環境との相互作用を適切に保つために重要な役割を果たす他の手法についても紹介します。
MQL5における段階的特徴量選択
この記事では、MQL5で実装された段階的特徴量選択の修正バージョンを紹介します。このアプローチは、Timothy Masters著の「Modern Data Mining Algorithms in C++ and CUDA C」で概説されている手法に基づいています。
プライスアクション分析ツールキットの開発(第6回):Mean Reversion Signal Reaper
いくつかの概念は一見するとシンプルに思えるかもしれませんが、実際にそれを形にするのは想像以上に難しいことがあります。この記事では、平均回帰(Mean Reversion)戦略を用いて市場を巧みに分析するエキスパートアドバイザー(EA)の自動化に取り組んだ、革新的なアプローチをご紹介します。この魅力的な自動化プロセスの奥深さを、一緒に紐解いていきましょう。
リプレイシステムの開発(第39回):道を切り開く(III)
開発の第2段階に進む前に、いくつかのアイデアを修正する必要があります。MQL5に必要なことをさせる方法をご存知ですか。ドキュメントに書かれている以上のことをしようとしたことはありますか。そうでないなら、準備をしましょう。ここでは、ほとんどの人が普段やらないことをやるからです。
亀甲進化アルゴリズム(TSEA)
これは、亀の甲羅の進化にインスパイアされたユニークな最適化アルゴリズムです。TSEAアルゴリズムは、問題に対する最適解を表す構造化された皮膚領域が徐々に形成される様子をエミュレートします。最良の解は「硬く」なり、外側に近い位置に配置され、成功しなかった解は「柔らかい」ままで内側に留まります。このアルゴリズムは、質と距離に基づく解のクラスタリングを利用し、成功率の低い選択肢を保持しながら、柔軟性と適応性を提供します。
ALGLIBライブラリの最適化手法(第1回):
この記事では、MQL5におけるALGLIBライブラリの最適化手法について紹介します。記事には、最適化問題を解決するためにALGLIBを使用するシンプルで分かりやすい例が含まれており、これらの手法をできるだけ身近に感じられるように構成されています。BLEIC、L-BFGS、NSといったアルゴリズムのつながりを詳しく見ていき、それらを使って簡単なテスト問題を解いてみます。
MQL5取引ツールキット(第7回):直近でキャンセルされた予約注文に関する関数で履歴管理EX5ライブラリを拡張
直近でキャンセルされた予約注文を処理する関数に焦点を当て、History Manager EX5ライブラリの最終モジュールの作成を完了する方法を学習します。これにより、MQL5を使用してキャンセルされた予約注文に関連する重要な詳細を効率的に取得して保存するためのツールが提供されます。
ALGLIBライブラリの最適化手法(第2回):
この記事では、ALGLIBライブラリにおける残りの最適化手法の検討を続けていきます。特に、複雑な多次元関数でのテストに重点を置きます。これにより、各アルゴリズムの効率性を評価できるだけでなく、さまざまな条件下における強みと弱みを明らかにすることができます。
MQL5取引ツールキット(第5回):ポジション関数による履歴管理EX5ライブラリの拡張
エクスポート可能なEX5関数を作成して、過去のポジションデータを効率的にクエリおよび保存する方法を解説します。このステップバイステップのガイドでは、直近にクローズされたポジションの主要なプロパティを取得するモジュールを開発し、HistoryManagement EX5ライブラリを拡張していきます。対象となるプロパティには、純利益、取引時間、ピップ単位でのストップロスやテイクプロフィット、利益値、その他多くの重要な情報が含まれます。
Developing a Replay System (Part 36): Making Adjustments (II)
One of the things that can make our lives as programmers difficult is assumptions. In this article, I will show you how dangerous it is to make assumptions: both in MQL5 programming, where you assume that the type will have a certain value, and in MetaTrader 5, where you assume that different servers work the same.
リプレイシステムの開発(第45回):Chart Tradeプロジェクト(IV)
この記事の主な目的は、C_ChartFloatingRADクラスの紹介と説明です。Chart Trade指標は、非常に興味深い方法で機能しています。チャート上のオブジェクトの数はまだ少ないものの、期待通りの機能を実現しています。指標の値は編集可能ですが、その実現方法については疑問が残るかもしれません。この記事を読めば、これらの疑問が解消されるでしょう。
最適化アルゴリズムの効率における乱数生成器の品質の役割
この記事では、メルセンヌ・ツイスタ乱数生成器を取り上げ、MQL5の標準的な乱数生成器と比較します。また、乱数生成器の品質が最適化アルゴリズムの結果に与える影響についても調べます。
MQL5で取引管理者パネルを作成する(第9回):コード編成(I)
このディスカッションでは、大規模なコードベースを扱う際に直面する課題について掘り下げます。MQL5におけるコード構成のベストプラクティスを紹介し、取引管理パネルのソースコードの可読性と拡張性を向上させるための実践的なアプローチを実装します。また、他の開発者がアルゴリズム開発で活用できる再利用可能なコードコンポーネントの開発も目指しています。ぜひ最後までお読みいただき、ご意見をお寄せください。
プライスアクション分析ツールキットの開発(第4回):Analytics Forecaster EA
チャート上に表示された分析済みのメトリックを見るだけにとどまらず、Telegramとの統合によってブロードキャストを拡張するという、より広い視点へと移行しています。この機能強化により、Telegramアプリを通じて、重要な結果がモバイルデバイスに直接配信されるようになります。この記事では、この新たな取り組みを一緒に探っていきましょう。