MQL5における統計とデータの分析に関する記事

icon

数学的なモデルと確率の法則は多くのトレーダーにとって興味深いでしょう。数学はテクニカル指標の基本であり、トレーディングの結果を分析しストラテジーを開発するためには統計が必要です。

あいまいなロジック、デジタルフィルタ、マーケットプロファイル、コホーネンマップ、ニューラルガス、その他のトレーディングに使用できる多くのツールについてご覧ください。

新しい記事を追加
最新 | ベスト
preview
周波数領域でのフィルタリングと特徴抽出

周波数領域でのフィルタリングと特徴抽出

この記事では、予測モデルに有用な独自の特徴を抽出するために周波数領域で表現された時系列にデジタルフィルタを適用する方法を探ります。
preview
時系列マイニングのためのデータラベル(第1回):EA操作チャートでトレンドマーカー付きデータセットを作成する

時系列マイニングのためのデータラベル(第1回):EA操作チャートでトレンドマーカー付きデータセットを作成する

この連載では、ほとんどの人工知能モデルに適合するデータを作成できる、いくつかの時系列のラベル付け方法を紹介します。ニーズに応じて的を絞ったデータのラベル付けをおこなうことで、訓練済みの人工知能モデルをより期待通りの設計に近づけ、モデルの精度を向上させ、さらにはモデルの質的飛躍を助けることができます。
preview
MQL5での定量分析:有望なアルゴリズムの実装

MQL5での定量分析:有望なアルゴリズムの実装

定量分析とは何なのか、また、主要プレーヤーがどのように定量分析を使用しているのかを分析します。MQL5言語で定量分析アルゴリズムの1つを作成します。
preview
リプレイシステムの開発 - 市場シミュレーション(第8回):指標のロック

リプレイシステムの開発 - 市場シミュレーション(第8回):指標のロック

この記事では、MQL5言語を使用しながら指標をロックする方法を見ていきます。非常に興味深く素晴らしい方法でそれをおこないます。
preview
MQL5で取引管理者パネルを作成する(第1回):メッセージングインターフェイスの構築

MQL5で取引管理者パネルを作成する(第1回):メッセージングインターフェイスの構築

この記事では、システム管理者を対象に、プラットフォーム内で他のトレーダーと直接コミュニケーションを図るための、MetaTrader 5用メッセージングインターフェイスの作成について説明します。ソーシャルプラットフォームとMQL5との最近の統合により、さまざまなチャンネルに素早くシグナルをブロードキャストことができるようになりました。YESかNOのどちらかをクリックするだけで、送られてきたシグナルを検証できることをご想像ください。詳しくは本稿をご覧ください。
preview
母集団最適化アルゴリズム:進化戦略、(μ,λ)-ESと(μ+λ)-ES

母集団最適化アルゴリズム:進化戦略、(μ,λ)-ESと(μ+λ)-ES

この記事では、進化戦略(Evolution Strategies:ES)として知られる最適化アルゴリズム群について考察します。これらは、最適解を見つけるために進化原理を用いた最初の集団アルゴリズムの1つです。従来のESバリエーションへの変更を実施し、アルゴリズムのテスト関数とテストスタンドの手法を見直します。
preview
知っておくべきMQL5ウィザードのテクニック(第11回):ナンバーウォール

知っておくべきMQL5ウィザードのテクニック(第11回):ナンバーウォール

ナンバーウォールは、リニアシフトバックレジスタの一種で、収束を確認することにより、予測可能な数列を事前にスクリーニングします。これらのアイデアがMQL5でどのように役立つかを見ていきます。
preview
母集団最適化アルゴリズム:等方的焼きなまし(Simulated Isotropic Annealing、SIA)アルゴリズム(第2部)

母集団最適化アルゴリズム:等方的焼きなまし(Simulated Isotropic Annealing、SIA)アルゴリズム(第2部)

第1部では、よく知られた一般的なアルゴリズムである焼きなまし法について説明しました。その長所と短所を徹底的に検討しました。第2部では、アルゴリズムを抜本的に改良し、新たな最適化アルゴリズムである等方的焼きなまし(Simulated Isotropic Annealing、SIA)法を紹介します。
preview
母集団最適化アルゴリズム:スマート頭足類(SC、Smart Cephalopod)を使用した変化する形状、確率分布の変化とテスト

母集団最適化アルゴリズム:スマート頭足類(SC、Smart Cephalopod)を使用した変化する形状、確率分布の変化とテスト

この記事では、確率分布の形状を変えることが最適化アルゴリズムの性能に与える影響について検証します。最適化問題の文脈における様々な確率分布の効率を評価するために、スマート頭足類(SC、Smart Cephalopod)テストアルゴリズムを用いた実験をおこないます。
preview
リプレイシステムの開発 - 市場シミュレーション(第16回):新しいクラスシステム

リプレイシステムの開発 - 市場シミュレーション(第16回):新しいクラスシステム

もっと仕事を整理する必要があります。コードはどんどん大きくなっており、今やらなければ不可能になります。分割して征服しましょう。MQL5では、このタスクを実行するのに役立つクラスを使用することができますが、そのためにはクラスに関する知識が必要です。おそらく初心者を最も混乱させるのは継承でしょう。この記事では、これらのメカニズムを実用的かつシンプルな方法で使用する方法を見ていきます。
preview
知っておくべきMQL5ウィザードのテクニック(第09回):K平均法とフラクタル波の組み合わせ

知っておくべきMQL5ウィザードのテクニック(第09回):K平均法とフラクタル波の組み合わせ

K平均法では、まず無作為に生成されたクラスタ重心を使用するデータセットのマクロビューに焦点を当てたプロセスとしてデータポイントを集団化するアプローチを採用し、その後ズームインしてこれらの重心を調整してデータセットを正確に表現します。これを見て、その使用例をいくつか活用していきます。
preview
エキスパートアドバイザーのQ値の開発

エキスパートアドバイザーのQ値の開発

この記事では、エキスパートアドバイザー(EA)がストラテジーテスターで表示できる品質スコアを開発する方法を見ていきます。Van TharpとSunny Harrisという2つの有名な計算方法を見てみましょう。
preview
MQL5における代替リスクリターン指標

MQL5における代替リスクリターン指標

本稿では、シャープレシオの代替指標とされるいくつかのリスクリターン指標の実装を紹介し、その特徴を分析するために仮想資本曲線を検証します。
preview
MQL5の圏論(第21回):LDAによる自然変換

MQL5の圏論(第21回):LDAによる自然変換

連載21回目となるこの記事では、自然変換と、線形判別分析を使ったその実装方法について引き続き見ていきます。前回同様、シグナルクラス形式でその応用例を紹介します。
preview
知っておくべきMQL5ウィザードのテクニック(第37回):線形カーネルとMatérnカーネルによるガウス過程回帰

知っておくべきMQL5ウィザードのテクニック(第37回):線形カーネルとMatérnカーネルによるガウス過程回帰

線形カーネルは、線形回帰やサポートベクターマシンの機械学習で使用される、この種の行列の中で最も単純な行列です。一方、Matérnカーネルは、以前の記事で紹介したRBF (Radial Basis Function)をより汎用的にしたもので、RBFが想定するほど滑らかではない関数をマッピングするのに長けています。売買条件を予測する際に、両方のカーネルを利用するカスタムシグナルクラスを構築します。
preview
リプレイシステムの開発 - 市場シミュレーション(第13回):シミュレーターの誕生(III)

リプレイシステムの開発 - 市場シミュレーション(第13回):シミュレーターの誕生(III)

ここでは、次回以降の仕事に関連するいくつかの要素を簡略化します。シミュレーターが生成するランダム性を視覚化する方法も説明しましょう。
preview
初心者のためのMQL5によるSP500取引戦略

初心者のためのMQL5によるSP500取引戦略

MQL5を活用してS&P500指数を正確に予測する方法をご紹介します。古典的なテクニカル分析とアルゴリズム、そして長年の経験に裏打ちされた原理を組み合わせることで、安定性を高め、確かな市場洞察力を得られます。
preview
MQL5の圏論(第19回):自然性の正方形の帰納法

MQL5の圏論(第19回):自然性の正方形の帰納法

自然性の正方形の帰納法を考えることで、自然変換について考察を続けます。MQL5ウィザードで組み立てられたエキスパートアドバイザー(EA)の多通貨の実装には若干の制約があるため、スクリプトでデータ分類能力を紹介しています。主な用途は、価格変動の分類とその予測です。
preview
母集団最適化アルゴリズム:荷電系探索(Charged System Search、CSS)アルゴリズム

母集団最適化アルゴリズム:荷電系探索(Charged System Search、CSS)アルゴリズム

この記事では、無生物の自然にヒントを得た別の最適化アルゴリズムである荷電系探索(CSS)アルゴリズムについて検討します。この記事の目的は、物理学と力学の原理に基づいた新しい最適化アルゴリズムを提示することです。
preview
母集団最適化アルゴリズム:Spiral Dynamics Optimization (SDO)アルゴリズム

母集団最適化アルゴリズム:Spiral Dynamics Optimization (SDO)アルゴリズム

本稿では、軟体動物の殻など自然界における螺旋軌道の構築パターンに基づく最適化アルゴリズム、Spiral Dynamics Optimization(SDO、螺旋ダイナミクス最適化)アルゴリズムを紹介します。著者らが提案したアルゴリズムを徹底的に修正し、改変しました。この記事では、こうした変更の必要性について考えてみたいと思います。
preview
データサイエンスと機械学習(第27回):MetaTrader 5取引ボットにおける畳み込みニューラルネットワーク(CNN)に価値はあるか?

データサイエンスと機械学習(第27回):MetaTrader 5取引ボットにおける畳み込みニューラルネットワーク(CNN)に価値はあるか?

畳み込みニューラルネットワーク(CNN)は、画像や映像のパターンを検出する能力に優れていることで有名で、さまざまな分野に応用されています。この記事では、金融市場の価値あるパターンを識別し、MetaTrader 5取引ボットのための効果的な取引シグナルを生成するCNNの可能性を探ります。このディープマシンラーニングの手法を、よりスマートな取引判断のためにどのように活用できるかを見てみましょう。
preview
リプレイシステムの開発(第53回):物事は複雑になる(V)

リプレイシステムの開発(第53回):物事は複雑になる(V)

今回は、あまり理解されていない重要なトピックを取り上げます。「カスタムイベント」です。これは危険です。これらの要素の長所と短所を解説します。このトピックは、MQL5やその他の言語でプロのプログラマーになりたい人にとって重要な鍵となります。ここではMQL5とMetaTrader 5に焦点を当てます。
preview
MQL5とPythonで自己最適化エキスパートアドバイザーを構築する(第5回):深層マルコフモデル

MQL5とPythonで自己最適化エキスパートアドバイザーを構築する(第5回):深層マルコフモデル

この記事では、RSIインジケーターに単純なマルコフ連鎖を適用し、インジケーターが主要なレベルを通過した後の価格の挙動を観察します。NZDJPYペアで最も強い買いシグナルと売りシグナルは、RSIがそれぞれ11~20の範囲と71~80の範囲にあるときに生成されるという結論に達しました。データを操作して、保有するデータから直接学習した最適な取引戦略を作成する方法を説明します。さらに、遷移行列を最適に使用することを学習するためにディープニューラルネットワークを訓練する方法を説明します。
preview
リプレイシステムの開発—市場シミュレーション(第3回):設定の調整(I)

リプレイシステムの開発—市場シミュレーション(第3回):設定の調整(I)

まずは現状を明らかにすることから始めましょう。今やらなければ、すぐに問題になります。
preview
一からの取引エキスパートアドバイザーの開発(第16部):Web上のデータにアクセスする(II)

一からの取引エキスパートアドバイザーの開発(第16部):Web上のデータにアクセスする(II)

Webからエキスパートアドバイザー(EA)にデータを入力する方法はそれほど明らかにはわかりません。MetaTrader 5が提供するすべての可能性を理解しなければ、そう簡単にはいきません。
preview
時系列分類問題における因果推論

時系列分類問題における因果推論

この記事では、機械学習を用いた因果推論の理論と、Pythonによるカスタムアプローチの実装について見ていきます。因果推論と因果思考は哲学と心理学にルーツを持ち、現実を理解する上で重要な役割を果たしています。
preview
リプレイシステムの開発 - 市場シミュレーション(第9回):カスタムイベント

リプレイシステムの開発 - 市場シミュレーション(第9回):カスタムイベント

ここでは、カスタムイベントがどのようにトリガーされ、指標でどのようにリプレイ/シミュレーションサービスの状態がレポートされるかを見ていきます。
preview
母集団最適化アルゴリズム:Intelligent Water Drops (IWD)アルゴリズム

母集団最適化アルゴリズム:Intelligent Water Drops (IWD)アルゴリズム

この記事では、無生物由来の興味深いアルゴリズム、つまり川床形成プロセスをシミュレーションするIntelligent Water Drops (IWD)について考察しています。このアルゴリズムのアイデアにより、従来の格付けのリーダーであったSDSを大幅に改善することが可能になりました。いつものように、新しいリーダー(修正SDSm)は添付ファイルにあります。
preview
非定常過程と偽回帰

非定常過程と偽回帰

この記事では、モンテカルロシミュレーションを用いて非定常過程に回帰分析を適用しようとすると、偽回帰が発生することを示しています。
preview
母集団最適化アルゴリズム:Stochastic Diffusion Search (SDS)

母集団最適化アルゴリズム:Stochastic Diffusion Search (SDS)

この記事では、ランダムウォークの原理に基づく非常に強力で効率的な最適化アルゴリズムである確SDS(Stochastic Diffusion Search、確率的拡散探索)について説明します。このアルゴリズムは、複雑な多次元空間で最適解を求めることができ、収束速度が速く、局所極値を避けることができるのが特徴です。
preview
知っておくべきMQL5ウィザードのテクニック(第26回):移動平均とハースト指数

知っておくべきMQL5ウィザードのテクニック(第26回):移動平均とハースト指数

ハースト指数は、時系列データが長期間にわたってどれだけ自己相関しているかを示す指標です。ハースト指数は、時系列データの長期的な特性を捉えることがわかっているため、経済や金融に限らず、幅広い時系列分析において重要な役割を果たします。本稿では、ハースト指数を移動平均線と組み合わせることで、トレーダーにとって有用なシグナルをどのように得られるかを検討し、その潜在的なメリットに焦点を当てます。
preview
データサイエンスと機械学習(第21回):ニューラルネットワークと最適化アルゴリズムの解明

データサイエンスと機械学習(第21回):ニューラルネットワークと最適化アルゴリズムの解明

ニューラルネットワーク内部で使用される最適化アルゴリズムを解明しながら、ニューラルネットワークの核心に飛び込みます。この記事では、ニューラルネットワークの可能性を最大限に引き出し、モデルを精度と効率の新たな高みへと押し上げる重要なテクニックご紹介します。
preview
ニュース取引が簡単に(第6回):取引の実施(III)

ニュース取引が簡単に(第6回):取引の実施(III)

この記事では、IDに基づいて個々のニュースイベントをフィルターする関数を実装します。さらに、以前のSQLクエリを改善し、追加情報が提供されたり、クエリの実行時間が短縮されるようになります。さらに、これまでの記事で作成したコードを機能的なものにします。
preview
知っておくべきMQL5ウィザードのテクニック(第27回):移動平均と迎角

知っておくべきMQL5ウィザードのテクニック(第27回):移動平均と迎角

迎角はよく引用される指標で、その急勾配は優勢なトレンドの強さと強い相関があると理解されています。一般的にどのように使用され、理解されているかを調べ、それを使用する取引システムの利益のために、その測定方法に導入可能な変更があるかどうかを検討します。
preview
知っておくべきMQL5ウィザードのテクニック(第13回):ExpertSignalクラスのためのDBSCAN

知っておくべきMQL5ウィザードのテクニック(第13回):ExpertSignalクラスのためのDBSCAN

DBSCAN (Density-Based Spatial Clustering of Applications with Noise)は、データをグループ化する教師なし形式であり、入力パラメータをほとんど必要としません。入力パラメータは2つだけであり、K平均法などの他のアプローチと比較すると利点が得られます。ウィザードで組み立てたEAを使用してテストし、最終的に取引するために、これがどのように建設的であり得るかを掘り下げます。
preview
知っておくべきMQL5ウィザードのテクニック(第32回):正則化

知っておくべきMQL5ウィザードのテクニック(第32回):正則化

正則化とは、ニューラルネットワークのさまざまな層全体に適用される離散的な重み付けに比例して、損失関数にペナルティを与える形式です。様々な正則化形式について、ウィザードで組み立てたEAを使ったテスト実行で、この正則化が持つ重要性を見てみます。
preview
母集団最適化アルゴリズム:SSG(Saplings Sowing and Growing up、苗木の播種と育成)

母集団最適化アルゴリズム:SSG(Saplings Sowing and Growing up、苗木の播種と育成)

SSG(Saplings Sowing and Growing up、苗木の播種と育成)アルゴリズムは、様々な条件下で優れた生存能力を発揮する、地球上で最も回復力のある生物の1つからインスピレーションを得ています。
preview
季節性を利用した外国為替スプレッド取引

季節性を利用した外国為替スプレッド取引

この記事では、外国為替取引におけるスプレッド取引時に季節性要因を利用したレポートデータの生成および提供の可能性について検討します。
preview
知っておくべきMQL5ウィザードのテクニック(第19回):ベイズ推定

知っておくべきMQL5ウィザードのテクニック(第19回):ベイズ推定

ベイズ推定とは、新しい情報が入手可能になったときに確率仮説を更新するためにベイズの定理を採用することです。これは直感的に時系列分析への適応につながるので、シグナルだけでなく、資金管理やトレーリングストップのためのカスタムクラスを構築する際に、これをどのように利用できるか見てみましょう。
preview
PythonとMQL5でロボットを開発する(第2回):モデルの選択、作成、訓練、Pythonカスタムテスター

PythonとMQL5でロボットを開発する(第2回):モデルの選択、作成、訓練、Pythonカスタムテスター

PythonとMQL5で自動売買ロボットを開発する連載を続けます。今日は、モデルの選択と訓練、テスト、交差検証、グリッドサーチ、モデルアンサンブルの問題を解決します。