MQL5における統計とデータの分析に関する記事

icon

数学的なモデルと確率の法則は多くのトレーダーにとって興味深いでしょう。数学はテクニカル指標の基本であり、トレーディングの結果を分析しストラテジーを開発するためには統計が必要です。

あいまいなロジック、デジタルフィルタ、マーケットプロファイル、コホーネンマップ、ニューラルガス、その他のトレーディングに使用できる多くのツールについてご覧ください。

新しい記事を追加
最新 | ベスト
preview
データサイエンスと機械学習(第14回):コホネンマップを使って市場で自分の道を見つける

データサイエンスと機械学習(第14回):コホネンマップを使って市場で自分の道を見つける

複雑で変化し続ける市場をナビゲートする、最先端の取引アプローチをお探しですか。人工ニューラルネットワークの革新的な形態であるコホネンマップは、市場データの隠れたパターンやトレンドを発見するのに役立ちます。この記事では、コホネンマップがどのように機能するのか、そして、より賢く、より効果的な取引戦略を開発するために、どのように活用できるのかを探ります。経験豊富なトレーダーも、これから取引を始める人も、このエキサイティングな新しいアプローチを見逃す手はありません。
preview
MQL5の圏論(第6回):単射的引き戻しと全射的押し出し

MQL5の圏論(第6回):単射的引き戻しと全射的押し出し

圏論は、数学の多様かつ拡大を続ける分野であり、最近になってMQL5コミュニティである程度取り上げられるようになりました。この連載では、その概念と原理のいくつかを探索して考察することで、トレーダーの戦略開発におけるこの注目すべき分野の利用を促進することを目的としたオープンなライブラリを確立することを目指しています。
preview
リプレイシステムの開発—市場シミュレーション(第1回):最初の実験(I)

リプレイシステムの開発—市場シミュレーション(第1回):最初の実験(I)

市場がしまっているときに研究したり、市場の状況をシミュレーションしたりできるシステムを作成してはどうでしょうか。ここで、このトピックを扱う新しい連載を開始します。
preview
リプレイシステムの開発 — 市場シミュレーション(第4回):設定の調整(II)

リプレイシステムの開発 — 市場シミュレーション(第4回):設定の調整(II)

システムとコントロールを作り続けましょう。サービスをコントロールする能力がなければ、システムを前進させ、改善することは難しくなります。
preview
PythonとMQL5でロボットを開発する(第1回):データ前処理

PythonとMQL5でロボットを開発する(第1回):データ前処理

機械学習に基づく自動売買ロボットの開発の詳細なガイドです。連載第1回は、データと特徴量の収集と準備についてです。プロジェクトは、Pythonプログラミング言語とライブラリ、およびMetaTrader 5プラットフォームを使用して実装されます。
DoEasyライブラリでのその他のクラス(第70部): チャットオブジェクトコレクショの機能拡張と自動更新
DoEasyライブラリでのその他のクラス(第70部): チャットオブジェクトコレクショの機能拡張と自動更新

DoEasyライブラリでのその他のクラス(第70部): チャットオブジェクトコレクショの機能拡張と自動更新

本稿では、チャートオブジェクトの機能を拡張し、チャートのナビゲーション、スクリーンショットの作成、チャートの保存と適用を行います。また、チャートオブジェクトのコレクション、それらのウィンドウ、およびその中の指標の自動更新を実装します。
preview
MQL5とデータ処理パッケージの統合(第1回):高度なデータ分析と統計処理

MQL5とデータ処理パッケージの統合(第1回):高度なデータ分析と統計処理

統合により、MQL5から生の財務データをJupyter Labのようなデータ処理パッケージにインポートし、統計テストを含む高度な分析をおこなうシームレスなワークフローが実現します。
preview
データサイエンスと機械学習(第25回):回帰型ニューラルネットワーク(RNN)を用いたFX時系列予測

データサイエンスと機械学習(第25回):回帰型ニューラルネットワーク(RNN)を用いたFX時系列予測

回帰型ニューラルネットワーク(Recurrent Neural Network: RNN)は、過去の情報を活用して将来の出来事を予測することに優れています。その驚くべき予測能力は、さまざまな領域で応用され、大きな成功を収めています。この記事では、外為市場のトレンドを予測するためにRNNモデルを導入し、外為取引における予測精度を高める可能性を示します。
preview
初心者からエキスパートへ:MQL5での共同デバッグ

初心者からエキスパートへ:MQL5での共同デバッグ

問題解決は、MQL5でのプログラミングのような複雑なスキルを習得するための簡潔なルーチンを確立することができます。このアプローチでは、問題解決に集中しながら、同時にスキルアップを図ることができます。問題に取り組めば取り組むほど、高度な専門知識が脳に伝達されます。個人的には、デバッグはプログラミングをマスターするための最も効果的な方法だと思っています。今日は、コードクリーニングのプロセスを紹介し、乱雑なプログラムをクリーンで機能的なものに変えるための最善のテクニックについて解説します。この記事を読んで、貴重な洞察を発見してください。
preview
MQL5におけるARIMAモデルによる予測

MQL5におけるARIMAモデルによる予測

この記事では、ARIMAモデルを構築するためのCArimaクラスの開発を継続し、予測を可能にする直感的な手法を追加します。
preview
行列ユーティリティ - 行列とベクトルの標準ライブラリの機能を拡張する

行列ユーティリティ - 行列とベクトルの標準ライブラリの機能を拡張する

行列は大規模な数学的演算を効率的に処理できるため、機械学習アルゴリズムや一般的なコンピュータの基盤となっています。標準ライブラリは必要なものをすべて備えていますが、ユーティリティファイルでライブラリにはまだないいくつかの関数を導入して、拡張する方法を見てみましょう。
preview
データサイエンスと機械学習(第15回):SVM、すべてのトレーダーのツールボックスの必須ツール

データサイエンスと機械学習(第15回):SVM、すべてのトレーダーのツールボックスの必須ツール

取引の未来を形作るサポートベクターマシン(SVM)の不可欠な役割をご覧ください。この包括的なガイドブックでは、SVMがどのように取引戦略を向上させ、意思決定を強化し、金融市場における新たな機会を解き放つことができるかを探求しています。実際のアプリケーション、ステップバイステップのチュートリアル、専門家の洞察でSVMの世界に飛び込みましょう。現代の複雑な取引をナビゲートするのに不可欠なツールを装備してください。SVMはすべてのトレーダーのツールボックスの必需品です。
preview
チャート上で取引を視覚化する(第2回):データのグラフ表示

チャート上で取引を視覚化する(第2回):データのグラフ表示

ここでは、取引エントリを分析するために取引の印刷画面のアンロードを簡素化するスクリプトをゼロから開発します。単一の取引に関するすべての必要な情報は、異なる時間枠を描画する機能を備えた1つのチャートに便利に表示されます。
preview
母集団最適化アルゴリズム:粒子群(PSO)

母集団最適化アルゴリズム:粒子群(PSO)

この記事では、一般的な粒子群最適化(PSO)アルゴリズムについて検討します。以前は、収束、収束率、安定性、スケーラビリティなどの最適化アルゴリズムの重要な特性について説明し、テストスタンドを開発し、最も単純なRNGアルゴリズムを検討しました。
preview
データサイエンスとML(第31回):取引のためのCatBoost AIモデルの使用

データサイエンスとML(第31回):取引のためのCatBoost AIモデルの使用

CatBoost AIモデルは、その予測精度、効率性、散在する困難なデータセットに対する頑健性により、機械学習コミュニティの間で最近大きな人気を博しています。この記事では、外国為替市場を打ち負かすために、この種のモデルをどのように導入するかについて詳しく説明します。
preview
ニュース取引が簡単に(第3回):取引の実施

ニュース取引が簡単に(第3回):取引の実施

この記事では、ニュース取引エキスパートアドバイザー(EA)で、データベースに保存されている経済指標カレンダーに基づいて取引を開始します。さらに、EAのグラフィックを改善し、今後の経済指標カレンダーイベントに関するより適切な情報を表示する予定です。
preview
時系列マイニングのためのデータラベル(第6回):ONNXを使用したEAへの応用とテスト

時系列マイニングのためのデータラベル(第6回):ONNXを使用したEAへの応用とテスト

この連載では、ほとんどの人工知能モデルに適合するデータを作成できる、時系列のラベル付け方法をいくつかご紹介します。ニーズに応じて的を絞ったデータのラベル付けをおこなうことで、訓練済みの人工知能モデルをより期待通りの設計に近づけ、モデルの精度を向上させ、さらにはモデルの質的飛躍を助けることができます。
preview
PythonとMQL5でロボットを開発する(第3回):モデルベース取引アルゴリズムの実装

PythonとMQL5でロボットを開発する(第3回):モデルベース取引アルゴリズムの実装

PythonとMQL5で自動売買ロボットを開発する連載を続けます。この記事では、Pythonで取引アルゴリズムを作成します。
preview
初心者からエキスパートへ:Reporting EAで詳細な取引レポートをマスターする

初心者からエキスパートへ:Reporting EAで詳細な取引レポートをマスターする

本記事では、取引レポートの内容をより充実させ、最終レポートをPDF形式としてメール配信する方法について解説します。これは前回の記事からさらに一歩踏み込んだ内容であり、MQL5とPythonを組み合わせて、より便利でプロフェッショナルな形式の取引レポートを生成し、スケジュールする方法を継続して探求するものです。本記事を通じて、MQL5エコシステム内で取引レポート生成を最適化するための知見を得ていただければ幸いです。
preview
パターン検索への総当たり攻撃アプローチ(第VI部):循環最適化

パターン検索への総当たり攻撃アプローチ(第VI部):循環最適化

この記事では、MetaTrader 4および5の取引の自動化チェーン全体を完成するだけでなく、より興味深いことができるようになった改善の最初の部分を示します。今後、このソリューションにより、EAの作成と最適化の両方を完全に自動化し、効果的な取引構成を見つけるための人件費を最小限に抑えることができます。
preview
データサイエンスと機械学習(第09回):K近傍法(KNN)

データサイエンスと機械学習(第09回):K近傍法(KNN)

これは、訓練データセットから学習しない遅延アルゴリズムです。代わりにデータセットを保存し、新しいサンプルが与えられるとすぐに動作します。シンプルでありながら、実世界でさまざまなケースに応用されています。
DoEasyライブラリでの価格(第64部): 板情報、DOMスナップショットのクラスおよびスナップショットシリーズオブジェクト
DoEasyライブラリでの価格(第64部): 板情報、DOMスナップショットのクラスおよびスナップショットシリーズオブジェクト

DoEasyライブラリでの価格(第64部): 板情報、DOMスナップショットのクラスおよびスナップショットシリーズオブジェクト

本稿では、2つのクラス(DOMスナップショットオブジェクトのクラスとDOMスナップショットシリーズオブジェクトのクラス)を作成し、DOMデータシリーズの作成をテストします。
preview
外国為替市場の季節性から利益を得る

外国為替市場の季節性から利益を得る

例えば、冬になると新鮮な野菜の値段が上がったり、霜が降りると燃料の値段が上がったりすることはよく知られていますが、同じようなパターンが外国為替市場にもあることを知っている人は少ないです。
preview
独自のLLMをEAに統合する(第3部):CPUを使った独自のLLMの訓練

独自のLLMをEAに統合する(第3部):CPUを使った独自のLLMの訓練

今日の人工知能の急速な発展に伴い、言語モデル(LLM)は人工知能の重要な部分となっています。私たちは、強力なLLMをアルゴリズム取引に統合する方法を考える必要があります。ほとんどの人にとって、これらの強力なモデルをニーズに応じて微調整し、ローカルに展開して、アルゴリズム取引に適用することは困難です。本連載では、この目標を達成するために段階的なアプローチをとっていきます。
ソーシャルトレーディング収益性の高いシグナルをさらに良くすることはできるでしょうか?
ソーシャルトレーディング収益性の高いシグナルをさらに良くすることはできるでしょうか?

ソーシャルトレーディング収益性の高いシグナルをさらに良くすることはできるでしょうか?

ほとんどのサブスクライバーは、バランス曲線の美しさとサブスクライバーの数で取引シグナルを選択しています。そのため、多くのプロバイダーは今日、シグナルの実際の質よりも、美しい統計により気を配り、多くの場合、トランザクションの量を多くして、人為的にバランス曲線を理想的な形にしています。この記事では、信頼性の基準と、プロバイダーがシグナルの品質を向上させる方法をご紹介します。特定のシグナルの履歴、またプロバイダーがより収益を上げ、リスクを低くするための方法の例をあげていきます。
preview
データサイエンスと機械学習(第07回)::多項式回帰

データサイエンスと機械学習(第07回)::多項式回帰

線形回帰とは異なり、多項式回帰は、線形回帰モデルでは処理できないタスクをより適切に実行することを目的とした柔軟なモデルです。MQL5で多項式モデルを作成し、そこから何か良いものを作る方法を見つけてみましょう。
preview
母集団最適化アルゴリズム:人工蜂コロニー(ABC)

母集団最適化アルゴリズム:人工蜂コロニー(ABC)

今回は、人工蜂コロニーアルゴリズムを研究し、機能空間を研究する新しい原理で知識を補います。今回は、古典アルゴリズムについて、私の解釈を紹介します。
preview
データサイエンスと機械学習(第29回):AI訓練に最適なFXデータを選ぶための重要なヒント

データサイエンスと機械学習(第29回):AI訓練に最適なFXデータを選ぶための重要なヒント

この記事では、AIモデルのパフォーマンスを向上させるために、最も適切で高品質なFXデータを選択するための重要な側面について深く掘り下げます。
DoEasyライブラリの時系列(第48部): 単一サブウィンドウでの単一バッファ複数銘柄・複数期間指標
DoEasyライブラリの時系列(第48部): 単一サブウィンドウでの単一バッファ複数銘柄・複数期間指標

DoEasyライブラリの時系列(第48部): 単一サブウィンドウでの単一バッファ複数銘柄・複数期間指標

本稿では、単一の指標バッファを使用して、指標サブウィンドウを構築および操作するための複数銘柄・複数期間標準指標の作成例について説明します。プログラムのメインウィンドウで動作し、データを表示するための複数のバッファを持つ標準指標を操作するためのライブラリクラスを準備します。
preview
ニューラルネットワークが簡単に(第16部):クラスタリングの実用化

ニューラルネットワークが簡単に(第16部):クラスタリングの実用化

前回は、データのクラスタリングをおこなうためのクラスを作成しました。今回は、得られた結果を実際の取引に応用するためのバリエーションを紹介したいと思います。
DoEasyライブラリの時系列(第59部): 単一ティックのデータを格納するオブジェクト
DoEasyライブラリの時系列(第59部): 単一ティックのデータを格納するオブジェクト

DoEasyライブラリの時系列(第59部): 単一ティックのデータを格納するオブジェクト

本稿からは、価格データを処理するライブラリ機能を作成します。今日、さらに別のティックで到着したすべての価格データを格納するオブジェクトクラスを作成します。
preview
CatBoostモデルにおける交差検証と因果推論の基本、ONNX形式への書き出し

CatBoostモデルにおける交差検証と因果推論の基本、ONNX形式への書き出し

この記事では、機械学習を使用してボットを作成する方法を提案しています。
preview
EAを用いたリスクとキャピタルの管理

EAを用いたリスクとキャピタルの管理

この記事では、バックテストレポートでは見えないこと、自動売買ソフトを使用する際の注意点、エキスパートアドバイザー(EA)を使用している場合の資金管理、自動売買をおこなっている場合に取引活動を続けるために大きな損失をカバーする方法について説明します。
preview
市場シミュレーション(第1回):両建て注文(I)

市場シミュレーション(第1回):両建て注文(I)

本日から第2段階に入り、市場リプレイ/シミュレーションシステムについて見ていきます。まず、両建て注文の可能な解決策を示します。これは最終版ではありませんが、近い将来に解決しなければならない問題に対するひとつの可能なアプローチとなります。
preview
確率最適化と最適制御の例

確率最適化と最適制御の例

SMOC(Stochastic Model Optimal Controlの略と思われる)と名付けられたこのエキスパートアドバイザー(EA)は、MetaTrader 5用の高度なアルゴリズム取引システムのシンプルな例です。テクニカル指標、モデル予測制御、動的リスク管理を組み合わせて取引判断をおこないます。このEAには、適応パラメーター、ボラティリティに基づくポジションサイジング、トレンド分析が組み込まれており、さまざまな市場環境においてパフォーマンスを最適化します。
preview
DoEasyライブラリの時系列(第55部): 指標コレクションクラス

DoEasyライブラリの時系列(第55部): 指標コレクションクラス

本稿では、指標オブジェクトクラスとそのコレクションの開発を続けます。指標オブジェクトごとに、その説明と正しいコレクションクラスを作成して、エラーなしのストレージを作成し、コレクションリストから指標オブジェクトを取得します。
preview
母集団最適化アルゴリズム:ハーモニーサーチ(HS)

母集団最適化アルゴリズム:ハーモニーサーチ(HS)

今回は、完璧な音のハーモニーを見つける過程に着想を得た、最も強力な最適化アルゴリズムであるハーモニーサーチ(HS)を研究し、検証してみます。私たちの評価でトップになるのはどのアルゴリズムでしょうか。
preview
MQL5の圏論(第1回)

MQL5の圏論(第1回)

圏論は数学の一分野であり、多様な広がりを見せていますが、MQLコミュニティではまだ比較的知られていない分野です。この連載では、その概念のいくつかを紹介して考察することで、コメントや議論を呼び起こし、トレーダーの戦略開発におけるこの注目すべき分野の利用を促進することを目的としたオープンなライブラリを確立することを目指しています。
preview
MQL5の圏論(第2回)

MQL5の圏論(第2回)

圏論は数学の一分野であり、多様な広がりを見せていますが、MQL5コミュニティではまだ比較的知られていません。この連載では、その概念のいくつかを紹介し、考察することで、コメントや議論を呼び起こし、トレーダーの戦略開発におけるこの注目すべき分野の利用を促進することを目的としたオープンなライブラリを確立することを目指しています。
preview
データサイエンスと機械学習(第13回):主成分分析(PCA)で金融市場分析を改善する

データサイエンスと機械学習(第13回):主成分分析(PCA)で金融市場分析を改善する

主成分分析(Principal component analysis、PCA)で金融市場分析に革命を起こしましょう。この強力な手法がどのようにデータの隠れたパターンを解き放ち、潜在的な市場動向を明らかにし、投資戦略を最適化するかをご覧ください。この記事では、PCAが複雑な金融データを分析するための新しいレンズをどのように提供できるかを探り、従来のアプローチでは見逃されていた洞察を明らかにします。金融市場データにPCAを適用することで競争力を高め、時代を先取りする方法をご覧ください。