

DoEasyライブラリでの価格(第64部): 板情報、DOMスナップショットのクラスおよびスナップショットシリーズオブジェクト
本稿では、2つのクラス(DOMスナップショットオブジェクトのクラスとDOMスナップショットシリーズオブジェクトのクラス)を作成し、DOMデータシリーズの作成をテストします。

母集団最適化アルゴリズム:蟻コロニー最適化(ACO)
今回は、蟻コロニー最適化アルゴリズムについて解析します。このアルゴリズムは非常に興味深く、複雑です。この記事では、新しいタイプのACOの作成を試みます。

行列ユーティリティ - 行列とベクトルの標準ライブラリの機能を拡張する
行列は大規模な数学的演算を効率的に処理できるため、機械学習アルゴリズムや一般的なコンピュータの基盤となっています。標準ライブラリは必要なものをすべて備えていますが、ユーティリティファイルでライブラリにはまだないいくつかの関数を導入して、拡張する方法を見てみましょう。

チャート上で取引を視覚化する(第2回):データのグラフ表示
ここでは、取引エントリを分析するために取引の印刷画面のアンロードを簡素化するスクリプトをゼロから開発します。単一の取引に関するすべての必要な情報は、異なる時間枠を描画する機能を備えた1つのチャートに便利に表示されます。


ソーシャルトレーディング収益性の高いシグナルをさらに良くすることはできるでしょうか?
ほとんどのサブスクライバーは、バランス曲線の美しさとサブスクライバーの数で取引シグナルを選択しています。そのため、多くのプロバイダーは今日、シグナルの実際の質よりも、美しい統計により気を配り、多くの場合、トランザクションの量を多くして、人為的にバランス曲線を理想的な形にしています。この記事では、信頼性の基準と、プロバイダーがシグナルの品質を向上させる方法をご紹介します。特定のシグナルの履歴、またプロバイダーがより収益を上げ、リスクを低くするための方法の例をあげていきます。

知っておくべきMQL5ウィザードのテクニック(第44回):ATR (Average True Range)テクニカル指標
ATRオシレーターは、特に外国為替市場において、ボラティリティの代理として機能する非常に人気のあるインジケーターです。これは、特にボリュームデータが不足している市場で広く活用されています。以前のインジケーターと同様に、パターンに基づいて分析をおこない、MQL5ウィザードライブラリのクラスとアセンブリを活用して、戦略およびテストレポートを共有します。

母集団最適化アルゴリズム:粒子群(PSO)
この記事では、一般的な粒子群最適化(PSO)アルゴリズムについて検討します。以前は、収束、収束率、安定性、スケーラビリティなどの最適化アルゴリズムの重要な特性について説明し、テストスタンドを開発し、最も単純なRNGアルゴリズムを検討しました。

MQL5とデータ処理パッケージの統合(第2回):機械学習と予測分析
本連載では、MQL5とデータ処理パッケージの統合について考察し、機械学習と予測分析の強力な組み合わせを深掘りします。MQL5と一般的な機械学習ライブラリをシームレスに接続することで、金融市場向けの高度な予測モデルを実現する方法を探ります。

ニュース取引が簡単に(第3回):取引の実施
この記事では、ニュース取引エキスパートアドバイザー(EA)で、データベースに保存されている経済指標カレンダーに基づいて取引を開始します。さらに、EAのグラフィックを改善し、今後の経済指標カレンダーイベントに関するより適切な情報を表示する予定です。

データサイエンスと機械学習(第07回)::多項式回帰
線形回帰とは異なり、多項式回帰は、線形回帰モデルでは処理できないタスクをより適切に実行することを目的とした柔軟なモデルです。MQL5で多項式モデルを作成し、そこから何か良いものを作る方法を見つけてみましょう。

ニューラルネットワークが簡単に(第16部):クラスタリングの実用化
前回は、データのクラスタリングをおこなうためのクラスを作成しました。今回は、得られた結果を実際の取引に応用するためのバリエーションを紹介したいと思います。

外国為替市場の季節性から利益を得る
例えば、冬になると新鮮な野菜の値段が上がったり、霜が降りると燃料の値段が上がったりすることはよく知られていますが、同じようなパターンが外国為替市場にもあることを知っている人は少ないです。

データサイエンスと機械学習(第26回):時系列予測における究極の戦い - LSTM対GRUニューラルネットワーク
前回の記事では、データの長期的な依存関係をうまく捉えられないにもかかわらず、利益を上げる戦略を構築できる単純RNNについて説明しました。この記事では、LSTM (Long-Short Term Memory)とGRU (Gated Recurrent Unit)の両方について説明します。この2つは、単純RNNの欠点を克服し、それを凌駕するために紹介されました。


DoEasyライブラリの時系列(第48部): 単一サブウィンドウでの単一バッファ複数銘柄・複数期間指標
本稿では、単一の指標バッファを使用して、指標サブウィンドウを構築および操作するための複数銘柄・複数期間標準指標の作成例について説明します。プログラムのメインウィンドウで動作し、データを表示するための複数のバッファを持つ標準指標を操作するためのライブラリクラスを準備します。


DoEasyライブラリの時系列(第59部): 単一ティックのデータを格納するオブジェクト
本稿からは、価格データを処理するライブラリ機能を作成します。今日、さらに別のティックで到着したすべての価格データを格納するオブジェクトクラスを作成します。

アラン・アンドリュースとその時系列分析手法
アラン・アンドリュースは、取引の分野において、現代世界で最も有名な「教育者」の一人です。彼の「ピッチフォーク」は、現代のほとんどの相場分析プログラムに搭載されています。しかし、ほとんどのトレーダーは、このツールが提供するチャンスのほんの一部も利用していません。その上、アンドリュースのオリジナルのトレーニングコースには、ピッチフォークだけでなく(ピッチフォークが主要な道具であることに変わりはないが)、他のいくつかの便利な構造についても説明があります。この記事では、アンドリュースがオリジナルのコースで教えていた驚異的なチャート分析法を紹介しています。画像がたくさん出てきますのでご注意ください。

MQL5の圏論(第13回):データベーススキーマを使用したカレンダーイベント
この記事は、MQL5での順序の圏論実装に従うもので、MQL5での分類のためにデータベーススキーマをどのように組み込むことができるかを検討します。取引関連のテキスト(文字列)情報を特定する際に、データベーススキーマの概念を圏論とどのように組み合わせることができるかの基礎を見ていきます。カレンダーイベントが中心です。

MQL5とデータ処理パッケージの統合(第1回):高度なデータ分析と統計処理
統合により、MQL5から生の財務データをJupyter Labのようなデータ処理パッケージにインポートし、統計テストを含む高度な分析をおこなうシームレスなワークフローが実現します。

パターン検索への総当たり攻撃アプローチ(第VI部):循環最適化
この記事では、MetaTrader 4および5の取引の自動化チェーン全体を完成するだけでなく、より興味深いことができるようになった改善の最初の部分を示します。今後、このソリューションにより、EAの作成と最適化の両方を完全に自動化し、効果的な取引構成を見つけるための人件費を最小限に抑えることができます。

ニューラルネットワークが簡単に(第38回):不一致による自己監視型探索
強化学習における重要な問題のひとつは、環境探索です。前回までに、「内因性好奇心」に基づく研究方法について見てきました。今日は別のアルゴリズムを見てみましょう。不一致による探求です。

ニューラルネットワークが簡単に(第15部):MQL5によるデータクラスタリング
クラスタリング法について引き続き検討します。今回は、最も一般的なk-meansクラスタリング手法の1つを実装するために、新しいCKmeansクラスを作成します。テスト中には約500のパターンを識別することができました。

時系列マイニングのためのデータラベル(第6回):ONNXを使用したEAへの応用とテスト
この連載では、ほとんどの人工知能モデルに適合するデータを作成できる、時系列のラベル付け方法をいくつかご紹介します。ニーズに応じて的を絞ったデータのラベル付けをおこなうことで、訓練済みの人工知能モデルをより期待通りの設計に近づけ、モデルの精度を向上させ、さらにはモデルの質的飛躍を助けることができます。

MQL5の圏論(第1回)
圏論は数学の一分野であり、多様な広がりを見せていますが、MQLコミュニティではまだ比較的知られていない分野です。この連載では、その概念のいくつかを紹介して考察することで、コメントや議論を呼び起こし、トレーダーの戦略開発におけるこの注目すべき分野の利用を促進することを目的としたオープンなライブラリを確立することを目指しています。


DoEasyライブラリの時系列(第44部): 指標バッファオブジェクトのコレクションクラス
この記事では、指標バッファオブジェクトのコレクションクラスの作成について説明しています。指標用の任意の数のバッファを作成して操作する機能をテストします(MQL指標で作成できるバッファの最大数は512です)。

MQL5でのARIMAトレーニングアルゴリズムの実装
この記事では、関数最小化のPowell法を使用して、ボックス・ジェンキンス法の自己回帰和分移動平均モデルを適用するアルゴリズムを実装します。ボックスとジェンキンスは、ほとんどの時系列は2つのフレームワークの一方または両方でモデル化できると述べました。

PythonとMQL5でロボットを開発する(第3回):モデルベース取引アルゴリズムの実装
PythonとMQL5で自動売買ロボットを開発する連載を続けます。この記事では、Pythonで取引アルゴリズムを作成します。

データサイエンスと機械学習(第09回):K近傍法(KNN)
これは、訓練データセットから学習しない遅延アルゴリズムです。代わりにデータセットを保存し、新しいサンプルが与えられるとすぐに動作します。シンプルでありながら、実世界でさまざまなケースに応用されています。

DoEasyライブラリの時系列(第54部): 抽象基本指標の子孫クラス
本稿では、基本抽象指標の子孫オブジェクトのクラスの作成について検討しています。このようなオブジェクトは、指標EAを作成し、さまざまな指標と価格のデータ値統計を収集および取得する機能へのアクセスを備えています。また、プログラムで作成された各指標のプロパティとデータにアクセスできる指標オブジェクトコレクションを作成します。


DoEasyライブラリでの価格(第63部): 板情報とその抽象リクエストクラス
本稿では、板情報を使用するための機能の開発を開始します。また、板情報抽象注文オブジェクトとその子孫のクラスも作成します。

DoEasyライブラリの時系列(第55部): 指標コレクションクラス
本稿では、指標オブジェクトクラスとそのコレクションの開発を続けます。指標オブジェクトごとに、その説明と正しいコレクションクラスを作成して、エラーなしのストレージを作成し、コレクションリストから指標オブジェクトを取得します。

データサイエンスと機械学習(第13回):主成分分析(PCA)で金融市場分析を改善する
主成分分析(Principal component analysis、PCA)で金融市場分析に革命を起こしましょう。この強力な手法がどのようにデータの隠れたパターンを解き放ち、潜在的な市場動向を明らかにし、投資戦略を最適化するかをご覧ください。この記事では、PCAが複雑な金融データを分析するための新しいレンズをどのように提供できるかを探り、従来のアプローチでは見逃されていた洞察を明らかにします。金融市場データにPCAを適用することで競争力を高め、時代を先取りする方法をご覧ください。

データサイエンスと機械学習(第25回):回帰型ニューラルネットワーク(RNN)を用いたFX時系列予測
回帰型ニューラルネットワーク(Recurrent Neural Network: RNN)は、過去の情報を活用して将来の出来事を予測することに優れています。その驚くべき予測能力は、さまざまな領域で応用され、大きな成功を収めています。この記事では、外為市場のトレンドを予測するためにRNNモデルを導入し、外為取引における予測精度を高める可能性を示します。

EAを用いたリスクとキャピタルの管理
この記事では、バックテストレポートでは見えないこと、自動売買ソフトを使用する際の注意点、エキスパートアドバイザー(EA)を使用している場合の資金管理、自動売買をおこなっている場合に取引活動を続けるために大きな損失をカバーする方法について説明します。

MQL5の圏論(第2回)
圏論は数学の一分野であり、多様な広がりを見せていますが、MQL5コミュニティではまだ比較的知られていません。この連載では、その概念のいくつかを紹介し、考察することで、コメントや議論を呼び起こし、トレーダーの戦略開発におけるこの注目すべき分野の利用を促進することを目的としたオープンなライブラリを確立することを目指しています。

移動エントロピーを用いた時系列の因果分析
この記事では、統計的因果関係をどのように活用して予測変数を特定できるかを解説します。因果性と移動エントロピーの関連性を探り、2つの変数間で情報がどの方向に伝達されているかを検出するためのMQL5コードを紹介します。


DoEasyライブラリでの価格(第65部): 板情報コレクションとMQL5.comシグナル操作クラス
本稿では、すべての銘柄の板情報コレクションクラスを作成し、シグナルオブジェクトクラスを作成することによってMQL5.comシグナルサービスを使用するための機能の開発を開始します。

一からの取引エキスパートアドバイザーの開発(第30部):指標としてのCHART TRADE?
今日は再びChart Tradeを使用しますが、今回はチャート上に存在する場合と存在しない場合があるオンチャート指標になります。

知っておくべきMQL5ウィザードのテクニック(第18回):固有ベクトルによるニューラルアーキテクチャの探索
ニューラルアーキテクチャー探索は、理想的なニューラルネットワーク設定を決定するための自動化されたアプローチで、多くのオプションや大規模なテストデータセットに直面したときにプラスになります。固有ベクトルをペアにすることで、この過程がさらに効率的になることを検証します。