MQL5で取引管理者パネルを作成する(第10回):外部リソースベースのインターフェイス
本日は、MQL5の機能を活用して、BMP形式の画像などの外部リソースを利用し、トレーディング管理パネル用に独自のスタイルを持ったホームインターフェイスを作成します。ここで紹介する手法は、画像やサウンドなど複数のリソースを一括でパッケージ化して配布する際に特に有効です。このディスカッションでは、こうした機能をどのように実装し、New_Admin_Panel EAにおいてモダンで視覚的に魅力的なインターフェイスを提供するかを一緒に見ていきましょう。
プライスアクション分析ツールキットの開発(第22回):Correlation Dashboard
このツールは、複数の通貨ペア間のリアルタイム相関係数を計算し表示するCorrelation Dashboardです。ペア同士がどのように連動して動くかを可視化することで、プライスアクション分析に有益な文脈を加え、市場間のダイナミクスを先読みする手助けとなります。ここでは、その機能と活用方法を紹介します。
知っておくべきMQL5ウィザードのテクニック(第56回):ビル・ウィリアムズフラクタル
ビル・ウィリアムズによるフラクタルは、最初にチャート上で目にしたときには見落とされがちな強力なインジケーターです。一見するとチャートが煩雑に見え、鋭さに欠けるように思えるかもしれません。この記事では、このインジケーターの覆いを取り払い、そのさまざまなパターンがどのように機能するのかを、MQL5ウィザードで組み上げたエキスパートアドバイザー(EA)によるフォワードウォークテストを通じて検証していきます。
データサイエンスとML(第35回):MQL5でのNumPy活用術 - 少ないコードで複雑なアルゴリズムを構築する技法
NumPyライブラリは、Pythonプログラミング言語においてほぼすべての機械学習アルゴリズムの中核を支えています。本記事では、高度なモデルやアルゴリズムの構築を支援するために、複雑なコードをまとめたモジュールを実装していきます。
初心者からエキスパートへ:MQL5を使ったアニメーションニュース見出し(I)
MetaTrader 5ターミナルでの取引において、ニュースのアクセス性は非常に重要な要素です。数多くのニュースAPIが存在するものの、多くのトレーダーはそれらを効果的に取引環境に統合することに課題を抱えています。本記事では、ニュースを最も必要とする場所であるチャート上に直接表示する、効率的なソリューションの構築を目指します。その実現のために、APIソースからのリアルタイムニュースを監視し、表示するNews Headline EA(エキスパートアドバイザー)を作成します。
効率的な最適化のバックボーンとしての母集団アルゴリズムの基本クラス
この記事は、最適化手法の適用を単純化するために、様々な母集団アルゴリズムを1つのクラスにまとめるというユニークな研究の試みです。このアプローチは、ハイブリッド型を含む新しいアルゴリズム開発の機会を開くだけでなく、普遍的な基本テストスタンドの構築にもつながります。このスタンドは、特定のタスクに応じて最適なアルゴリズムを選択するための重要なツールとなります。
知っておくべきMQL5ウィザードのテクニック(第52回):ACオシレーター
ACオシレーター(アクセラレーターオシレーター、Accelerator Oscillator)は、価格のモメンタムの「速度」だけでなく、その「加速」を追跡する、ビル・ウィリアムズによって開発されたインジケーターの一つです。最近の記事で取り上げたオーサムオシレーター(AO)と非常によく似ていますが、単なるスピードではなく加速に重点を置くことで、遅延の影響を回避しようとしています。本記事では、毎回のようにこのオシレーターからどのようなパターンが得られるかを分析し、ウィザード形式で構築されたエキスパートアドバイザー(EA)を通じて、それらが実際の取引においてどのような意味を持ち得るかを検証します。
株式市場における非線形回帰モデル
株式市場における非線形回帰モデル:金融市場は予測できるのかEURUSDの価格を予測するモデルを作成し、それに基づいて2つのロボット(Python版とMQL5版)を作ることを考えてみましょう。
MQL5とデータ処理パッケージの統合(第4回):ビッグデータの取り扱い
今回は、MQL5と強力なデータ処理ツールを統合する高度なテクニックに焦点を当て、取引分析および意思決定を強化するためのビッグデータの効率的な活用方法を探ります。
プライスアクション分析ツールキットの開発(第30回):コモディティチャンネル指数(CCI)、Zero Line EA
プライスアクション分析の自動化は、今後の方向性を示す重要なステップです。本記事では、デュアルCCIインジケーター、ゼロラインクロスオーバー戦略、EMA、そしてプライスアクションを組み合わせ、ATRを用いて売買シグナルを生成し、ストップロス(SL)およびテイクプロフィット(TP)を設定するツールを開発します。CCI Zero Line EAの開発手法について学ぶために、ぜひお読みください。
MQL5取引ツール(第7回):複数銘柄ポジションと口座監視のための情報ダッシュボード
本記事では、MQL5で情報ダッシュボードを開発し、複数銘柄のポジションや口座指標(残高、証拠金、余剰証拠金など)を監視できるようにします。リアルタイム更新可能なソート可能グリッド、CSVエクスポート機能、ヘッダーのグロー効果を実装し、使いやすさと視覚的魅力を向上させます。
プライスアクション分析ツールキットの開発(第23回):Currency Strength Meter
通貨ペアの方向性を本当に決定しているのは何でしょうか。それは各通貨自体の強さです。本記事では、通貨の強さを、その通貨が含まれるすべてのペアを順に分析することで測定します。この洞察により、各通貨ペアが相対的な強さに基づいてどのように動くかを予測することができます。詳しくは本稿をご覧ください。
データサイエンスとML(第44回):ベクトル自己回帰(VAR)を用いた外国為替OHLC時系列予測
本記事では、ベクトル自己回帰(VAR: Vector Autoregression)モデルを用いて、複数の通貨ペアのOHLC(始値、高値、安値、終値)時系列データを予測する方法を解説します。VARモデルの実装、学習、MetaTrader5上でのリアルタイム予測までをカバーし、通貨間の相互依存関係を分析して取引戦略の改善に役立てることができます。
知っておくべきMQL5ウィザードのテクニック(第78回):ゲーター&A/Dオシレーター戦略による市場耐性の強化
本記事では、ゲーターオシレーターとA/Dオシレーターを用いた取引の体系的アプローチの後半部分を紹介します。新たに5つのパターンを導入することで、偽の動きをフィルタリングし、早期の反転を検出し、時間軸をまたいでシグナルを整合させる方法を示します。明確なコーディング例とパフォーマンステストを通じて、この資料は理論と実践をMQL5開発者向けに橋渡ししています。
プライスアクション分析ツールキットの開発(第25回):Dual EMA Fractal Breaker
プライスアクションは、利益を生む取引機会を特定するための基本的なアプローチです。しかし、価格の動きやパターンを手動で監視することは、非常に手間がかかり、時間も消費します。そこで、本記事では、プライスアクションを自動的に分析し、潜在的な取引機会が検出されるたびにタイムリーなシグナルを提供するツールを開発する取り組みを紹介します。特に、フラクタルのブレイクアウトとEMA 14、EMA 200を組み合わせて信頼性の高い取引シグナルを生成する堅牢なツールを紹介し、トレーダーがより自信を持って意思決定できるよう支援します。
リプレイシステムの開発(第75回):新しいChart Trade(II)
この記事では、C_ChartFloatingRADクラスについて説明します。これはChart Tradeを機能させるための要となる部分です。ただし、解説はこれで終わりではありません。本記事の内容はかなり広範かつ深い理解を必要とするため、続きは次回の記事で補完します。ここで提示されるコンテンツは、教育目的のみに使用されることを意図しています。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを利用することは避けてください。
リプレイシステムの開発(第76回):新しいChart Trade(III)
この記事では、前回の記事で省略されていたDispatchMessageのコードがどのように動作するのかを見ていきます。さらに、次回の記事のテーマについても紹介します。そのため、次のトピックに進む前に、このコードの仕組みを理解しておくことが重要です。ここで提示されるコンテンツは、教育目的のみに使用されることを意図しています。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを利用することは避けてください。
MQL5で取引管理者パネルを作成する(第9回):コード編成(I)モジュール化
本ディスカッションでは、MQL5プログラムをより小さく扱いやすいモジュールに分割する一歩を踏み出します。これらのモジュール化されたコンポーネントをメインプログラムに統合することで、構造が整理され保守性が向上します。この手法によりメインプログラムの構造が簡素化されるだけでなく、各コンポーネントを他のエキスパートアドバイザー(EA)やインジケーター開発にも再利用可能にします。モジュール設計を採用することで、将来的な機能拡張の基盤を確立し、私たちのプロジェクトだけでなく広く開発者コミュニティにも貢献できるものとなります。
知っておくべきMQL5ウィザードのテクニック(第47回):時間差分を用いた強化学習
時間差分学習は、エージェントの訓練中に予測された報酬と実際の報酬の差に基づいてQ値を更新する強化学習のアルゴリズムの一つです。特に、状態と行動のペアにこだわらずにQ値を更新する点に特徴があります。したがって、これまでの記事と同様に、ウィザードで作成したエキスパートアドバイザー(EA)での適用方法を検討していきます。
母集団最適化アルゴリズム:極値から抜け出す力(第II部)
母集団の多様性が低いときに効率的に極小値を脱出して最大値に到達する能力という観点から、母集団最適化アルゴリズムの挙動を調べることを目的とした実験を続けます。研究結果が提供されます。
リプレイシステムの開発(第74回):新しいChart Trade(I)
この記事では、Chart Tradeに関する本連載の最後に示したコードを修正します。これらの変更は、現在のリプレイ/シミュレーションシステムのモデルにコードを適合させるために必要です。ここで提示されるコンテンツは、教育目的のみに使用されることを意図しています。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを利用することは避けてください。
動物移動最適化(AMO)アルゴリズム
この記事は、生命と繁殖に最適な条件を求めて動物が季節的に移動する様子をモデル化するAMOアルゴリズムについて説明しています。AMOの主な機能には、トポロジカル近傍の使用と確率的更新メカニズムが含まれており、実装が容易で、さまざまな最適化タスクに柔軟に対応できます。
最適化におけるカスタム基準への新しいアプローチ(第1回):活性化関数の例
これは、カスタム基準に関する数学的考察をおこなう連載記事の第1回目です。特に、ニューラルネットワークで使用される非線形関数、実装用のMQL5コード、さらにターゲットオフセットや補正オフセットの活用に焦点を当てています。
プライスアクション分析ツールキットの開発(第32回):Python Candlestick Recognitionエンジン(II) - Ta-Libを用いた検出
本記事では、Pythonでローソク足パターンを手動で検出していた前回の方法から一歩進み、TA-Libを活用した自動検出手法へと移行します。TA-Libは、60種類以上の異なるローソク足パターンを認識できる強力なテクニカル分析ライブラリです。これらのパターンは、市場の反転やトレンド継続の可能性を読み取る上で有用なインサイトを提供します。ぜひ最後までお読みください。
原子軌道探索(AOS)アルゴリズム
この記事では、原子軌道モデルの概念を利用して解を探索する原子軌道検索(AOS:Atomic Orbital Search)アルゴリズムについて考えます。AOSは、原子内における確率分布や相互作用のダイナミクスに基づいており、解の探索プロセスをシミュレートするアルゴリズムです。この記事では、候補解の位置更新やエネルギーの吸収・放出のメカニズムを含めたAOSの数学的な側面について詳しく説明します。AOSは、量子力学の原理を計算問題に応用する新たな可能性を切り開く、革新的な最適化手法です。
データサイエンスとML(第40回):機械学習データにおけるフィボナッチリトレースメントの利用
フィボナッチリトレースメントはテクニカル分析で人気のツールであり、トレーダーが潜在的な反転ゾーンを特定するのに役立ちます。本記事では、これらのリトレースメントレベルを機械学習モデルの目的変数に変換し、この強力なツールを使用して市場をより深く理解できるようにする方法について説明します。
適応型社会行動最適化(ASBO):二段階の進化
生物の社会的行動と、それが新しい数学モデルであるASBO(適応型社会的行動最適化)の開発に与える影響について、引き続き考察していきます。今回は、二段階の進化プロセスを詳しく分析し、アルゴリズムをテストした上で結論を導き出します。自然界において生物の集団が生存のために協力するのと同様に、ASBOも集団行動の原理を活用し、複雑な最適化問題を解決します。
Pythonの価格変動離散化手法
Python + MQL5を使用した価格離散化手法を見ていきます。本記事では、バー生成に関する幅広い手法を実装したPythonライブラリの開発経験についご紹介します。クラシックなボリュームバーやレンジバーから、よりエキゾチックな練行足やカギ足といった手法までを網羅します。スリーラインブレイクローソク足やレンジバーの統計分析をおこないながら、価格を離散的に表現する新たな方法を探っていきます。
受信者動作特性曲線の紹介
ROC曲線は、分類器の性能を評価するために使用されるグラフ表現です。ROC曲線は比較的単純に見えますが、実際に使用する際には、よくある誤解や陥りやすい落とし穴があります。この記事の目的は、分類器の性能評価を理解しようとする実務者に向けて、ROC曲線を紹介することです。
初心者からエキスパートへ:Reporting EA - ワークフローの設定
ブローカーは、多くの場合、あらかじめ定められたスケジュールに基づいて取引口座のレポートを定期的に提供します。これらの企業はAPI技術を通じて顧客の口座活動や取引履歴にアクセスできるため、取引パフォーマンスのレポートを代わりに生成することが可能です。同様に、MetaTrader 5ターミナルも詳細な取引履歴を保存しており、MQL5を利用することで完全にカスタマイズされたレポートの作成や、個別に設定した配信方法の定義が可能です。
データサイエンスとML(第38回):外国為替市場におけるAI転移学習
AIの画期的な進歩、たとえばChatGPTや自動運転車などは、単独のモデルから生まれたわけではなく、複数のモデルや共通の分野から得られた累積的な知識を活用することで実現しています。この「一度学習した知識を他に応用する」というアプローチは、アルゴリズム取引におけるAIモデルの変革にも応用可能です。本記事では、異なる金融商品の情報を活用し、他の銘柄における予測精度向上に役立てる方法として、転移学習の活用方法について解説します。
無政府社会最適化(ASO)アルゴリズム
この記事では、無政府社会最適化(ASO)アルゴリズムに触れ、無政府社会(中央集権的な権力や様々な種類のヒエラルキーから解放された社会的相互作用の異常なシステム)の参加者の非合理的で冒険的な行動に基づくアルゴリズムが、解空間を探索し、局所最適の罠を回避できることを議論します。本稿では、連続問題にも離散問題にも適用可能な統一的なASO構造を提示します。
Pythonによる農業国通貨への天候影響分析
天候と外国為替にはどのような関係があるのでしょうか。古典的な経済理論は、天候のような要因が市場の動きに与える影響を長い間無視してきました。しかし、すべてが変わりました。天候条件と農業通貨の市場でのポジションとの間に、どのようなつながりがあるのかを探ってみましょう。
MQL5で取引管理者パネルを作成する(第9回):コード編成(III)コミュニケーションモジュール
MQL5インターフェイス設計における最新の進展を、再設計されたコミュニケーションパネルの公開とともに詳しく解説します。また、モジュール化の原則に基づいて新しい管理パネルを構築するシリーズも引き続き展開していきます。この記事では、CommunicationsDialogクラスを段階的に開発し、それをDialogクラスから継承する方法を丁寧に解説します。さらに、開発には配列およびListViewクラスを活用します。MQL5開発スキルを高めるための実用的な知見を得るために、ぜひ記事を読み、コメント欄でディスカッションにご参加ください。
データサイエンスとML(第39回):ニュース × 人工知能、それに賭ける価値はあるか
ニュースは金融市場を動かす力を持っており、特に非農業部門雇用者数(NFP)のような主要指標の発表は大きな影響を与えます。私たちは、単一のヘッドラインが急激な価格変動を引き起こす様子を何度も目にしてきました。本記事では、ニュースデータと人工知能(AI)の強力な融合について探っていきます。
初心者からエキスパートへ:自動幾何解析システム
幾何学的パターンは、トレーダーに価格動向を簡潔に解釈する手段を提供します。多くのアナリストは手作業でトレンドラインや長方形、その他の形状を描き、形成されたパターンに基づいて取引判断をおこないます。本記事では、自動化による代替手段、すなわちMQL5を活用して最も一般的な幾何学パターンを検出・分析する方法を探ります。方法論を分解して説明し、実装の詳細を論じ、自動パターン認識がトレーダーの市場洞察をどのように鋭くできるかを強調します。
レーベンバーグ・マルカートアルゴリズムを用いた多層パーセプトロンのトレーニング
この記事では、順伝播型(フィードフォワード)ニューラルネットワークの学習におけるレーベンバーグ・マルカートアルゴリズムの実装を紹介します。また、scikit-learn Pythonライブラリのアルゴリズムと性能比較もおこなっています。まずは、勾配降下法、モーメンタム付き勾配降下法、確率的勾配降下法などのより単純な学習法について簡単に触れます。
MetaTrader 5機械学習の設計図(第1回):データリーケージとタイムスタンプの修正
MetaTrader 5で機械学習を取引に活用する以前に、最も見落とされがちな落とし穴の一つであるデータリーケージに対処することが極めて重要です。本記事では、データリーケージ、特にMetaTrader 5のタイムスタンプの罠がどのようにモデルのパフォーマンスを歪め、信頼性の低い売買シグナルにつながるのかを解説します。この問題の仕組みに踏み込み、その防止戦略を提示することで、実取引環境で信頼できる予測を提供する堅牢な機械学習モデルを構築するための道を切り開きます。