MQL5における圏論(第12回):順序
この記事は、MQL5でのグラフの圏論実装に従う連載の一部であり、順序について詳しく説明します。2つの主要な順序タイプを検討することで、順序理論の概念が取引の意思決定に情報を提供する上で、モノイド集合をどのようにサポートできるかを検証します。
リプレイシステムの開発 - 市場シミュレーション(第12回):シミュレーターの誕生(II)
シミュレーターの開発は、見た目よりもずっと面白いものです。事態はさらに面白くなってきているため、今日は、この方向にもう少し踏み込んでみましょう。
リプレイシステムの開発 - 市場シミュレーション(第19回):必要な調整
ここでは、コードに新しい関数を追加する必要がある場合に、スムーズかつ簡単に追加できるように基礎を整えます。現在のコードでは、有意義な進歩を遂げるために必要な事柄の一部をまだカバーまたは処理できません。最小限の労力で特定のことを実装できるようにするには、すべてを構造化する必要があります。すべてを正しくおこなえば、対処が必要なあらゆる状況に非常に簡単に適応できる、真に普遍的なシステムを得ることができます。
DoEasyライブラリでのその他のクラス(第72部): コレクション内のチャートオブジェクトパラメータの追跡と記録
本稿では、チャートオブジェクトクラスとそのコレクションの操作を完成します。また、チャートプロパティとそのウィンドウの変更の自動追跡を実装し、オブジェクトプロパティに新しいパラメータを保存します。このような変更により、を将来チャートコレクション全体のイベント機能実装できるようになります。
母集団最適化アルゴリズム:モンキーアルゴリズム(MA)
今回は、最適化アルゴリズムであるモンキーアルゴリズム(MA、Monkey Algorithm)について考えてみたいと思います。この動物が難関を乗り越え、最もアクセスしにくい木のてっぺんまで到達する能力が、MAアルゴリズムのアイデアの基礎となりました。
データサイエンスとML(第37回):ローソク足パターンとAIを活用して市場をリードする
ローソク足パターンは、トレーダーが市場の心理を理解し、金融市場におけるトレンドを特定するのに役立ちます。これにより、より情報に基づいた取引判断が可能となり、より良い成果につながる可能性があります。本記事では、AIモデルとローソク足パターンを組み合わせて最適な取引パフォーマンスを実現する方法を探っていきます。
PythonとMQL5を使用した特徴量エンジニアリング(第1回):長期AIモデルの移動平均の予測
移動平均は、AIモデルが予測するのに最適な指標です。しかし、データを慎重に変換することで、さらなる精度向上が可能です。本記事では、現在の手法よりもさらに先の未来を、高い精度を維持しながら予測できるAIモデルの構築方法を解説します。移動平均がこれほど有用な指標であることには驚かされます。
ケリー基準とモンテカルロシミュレーションを使用したポートフォリオリスクモデル
数十年にわたり、トレーダーは破産リスクを最小限に抑えつつ長期的な資産成長を最大化する手法として、ケリー基準の公式を活用してきました。しかし、単一のバックテスト結果に基づいてケリー基準を盲目的に適用することは、個人トレーダーにとって非常に危険です。というのも、実際の取引では時間の経過とともに取引優位性が薄れ、過去の実績は将来の結果を保証するものではないからです。本記事では、Pythonによるモンテカルロシミュレーションの結果を取り入れ、MetaTrader 5上で1つ以上のエキスパートアドバイザー(EA)にケリー基準を現実的に適用するためのリスク配分アプローチを紹介します。
母集団最適化アルゴリズム:Shuffled Frog-Leaping (SFL) アルゴリズム
本稿では、Shuffled Frog-Leaping (SFL)アルゴリズムの詳細な説明と、最適化問題を解く上でのその能力を紹介します。SFLアルゴリズムは、自然環境におけるカエルの行動から着想を得ており、関数最適化への新しいアプローチを提供します。SFLアルゴリズムは、効率的で柔軟なツールであり、様々な種類のデータを処理し、最適解を得ることができます。
DoEasyライブラリでの価格(第62部): ティックシリーズをリアルタイムで更新して板情報で作業するための準備
この記事では、ティックデータの更新をリアルタイムで実装し、板情報を操作するための銘柄オブジェクトクラスを準備します(DOM自体は次の記事で実装されます)。
トレンドフォロー型ボラティリティ予測のための隠れマルコフモデル
隠れマルコフモデル(HMM)は、観測可能な価格変動を分析することで、市場の潜在的な状態を特定する強力な統計手法です。取引においては、市場レジームの変化をモデル化・予測することで、ボラティリティの予測精度を高め、トレンドフォロー戦略の構築に役立ちます。本記事では、HMMをボラティリティのフィルターとして活用し、トレンドフォロー戦略を開発するための一連の手順を紹介します。
MQL5の圏論(第7回):多重集合、相対集合、添字集合
圏論は、数学の多様かつ拡大を続ける分野であり、最近になってMQL5コミュニティである程度取り上げられるようになりました。この連載では、その概念と原理のいくつかを探索して考察することで、トレーダーの戦略開発におけるこの注目すべき分野の利用を促進することを目的としたオープンなライブラリを確立することを目指しています。
母集団最適化アルゴリズム:焼きなまし(SA)アルゴリズム(第1部)
焼きなましアルゴリズムは、金属の焼きなまし過程にヒントを得たメタヒューリスティックです。この記事では、このアルゴリズムを徹底的に分析し、この広く知られている最適化方法を取り巻く多くの一般的な信念や神話を暴露します。この記事の後半では、カスタムの等方的焼きなまし(Simulated Isotropic Annealing、SIA)アルゴリズムについて説明します。
母集団最適化アルゴリズム:進化戦略、(μ,λ)-ESと(μ+λ)-ES
この記事では、進化戦略(Evolution Strategies:ES)として知られる最適化アルゴリズム群について考察します。これらは、最適解を見つけるために進化原理を用いた最初の集団アルゴリズムの1つです。従来のESバリエーションへの変更を実施し、アルゴリズムのテスト関数とテストスタンドの手法を見直します。
母集団最適化アルゴリズム
最適化アルゴリズム(OA)の分類についての入門記事です。この記事では、OAを比較するためのテストスタンド(関数群)を作成し、広く知られたアルゴリズムの中から最も普遍的なものを特定することを試みています。
データサイエンスと機械学習(第19回):AdaBoostでAIモデルをパワーアップ
AdaBoostは、AIモデルのパフォーマンスを向上させるために設計された強力なブースティングアルゴリズムです。AdaBoostはAdaptive Boostingの略で、弱い学習機をシームレスに統合し、その集合的な予測力を強化する洗練されたアンサンブル学習技法です。
DoEasyライブラリの時系列(第58部): 指標バッファデータの時系列
時系列の操作に関するトピックのしめくくりとして、指標バッファに格納されているストレージ、検索、およびデータの並べ替えを整理します。これにより、プログラムでライブラリベースで作成される指標の値に基づいて分析をさらに実行できます。ライブラリのすべてのコレクションクラスの一般的な概念により、対応するコレクションで必要なデータを簡単に見つけることができます。それぞれ、今日作成されたクラスでも同じことが可能です。
MetaTrader 5でのモンテカルロ並べ替え検定
この記事では、Metatrader 5のみを使用して、任意のエキスパートアドバイザー(EA)でシャッフルされたティックデータに基づいて並べ替え検定を実施する方法を見てみましょう。
母集団最適化アルゴリズム:ネルダー–ミード法、またはシンプレックス(NM)検索法
この記事では、ネルダー–ミード法の完全な探求を提示し、最適解を達成するために各反復でシンプレックス(関数パラメータ空間)がどのように修正され、再配置されるかを説明し、この方法がどのように改善されるかを説明します。
データサイエンスと機械学習—ニューラルネットワーク(第02回):フィードフォワードNNアーキテクチャの設計
フィードフォワード(予測制御)ニューラルネットワークについて説明する前に、少し説明しておくことがあって、設計もその1つです。入力、隠れ層の数、および各ネットワークのノードに対する柔軟なニューラルネットワークを構築および設計する方法を見てみましょう。
初心者からエキスパートへ:Reporting EAで詳細な取引レポートをマスターする
本記事では、取引レポートの内容をより充実させ、最終レポートをPDF形式としてメール配信する方法について解説します。これは前回の記事からさらに一歩踏み込んだ内容であり、MQL5とPythonを組み合わせて、より便利でプロフェッショナルな形式の取引レポートを生成し、スケジュールする方法を継続して探求するものです。本記事を通じて、MQL5エコシステム内で取引レポート生成を最適化するための知見を得ていただければ幸いです。
ニューラルネットワークが簡単に(第40回):大量のデータでGo-Exploreを使用する
この記事では、長い訓練期間に対するGo-Exploreアルゴリズムの使用について説明します。訓練時間が長くなるにつれて、ランダムな行動選択戦略が有益なパスにつながらない可能性があるためです。
ニューラルネットワークが簡単に(第34部):FQF(Fully Parameterized Quantile Function、完全にパラメータ化された分位数関数)
分散型Q学習アルゴリズムの研究を続けます。以前の記事では、分散型の分位数Q学習アルゴリズムについて検討しました。最初のアルゴリズムでは、与えられた範囲の値の確率を訓練しました。2番目のアルゴリズムでは、特定の確率で範囲を訓練しました。それらの両方で、1つの分布のアプリオリな知識を使用し、別の分布を訓練しました。この記事では、モデルが両方の分布で訓練できるようにするアルゴリズムを検討します。
リプレイシステムの開発(第58回):サービスへの復帰
リプレイ/シミュレーターサービスの開発と改良を一時中断していましたが、再開することにしました。ターミナルグローバルのようなリソースの使用をやめたため、いくつかの部分を完全に再構築しなければなりません。ご心配なく。このプロセスを詳細に説明することで、誰もが私たちのサービスの進展についていけるようにします。
MQL5の圏論(第3回)
圏論は数学の一分野であり、多様な広がりを見せていますが、MQL5コミュニティでは今のところ比較的知られていません。この連載では、その概念のいくつかを紹介して考察することで、トレーダーの戦略開発におけるこの注目すべき分野の利用を促進することを目的としたオープンなライブラリを確立することを目指しています。
リプレイシステムの開発—市場シミュレーション(第5回):プレビューの追加
現実的で利用しやすい方法で市場リプレイシステムを実装する方法を開発することができたので、プロジェクトを続けて、リプレイの動作を改善するためのデータを追加してみましょう。
PythonとMQL5でロボットを開発する(第2回):モデルの選択、作成、訓練、Pythonカスタムテスター
PythonとMQL5で自動売買ロボットを開発する連載を続けます。今日は、モデルの選択と訓練、テスト、交差検証、グリッドサーチ、モデルアンサンブルの問題を解決します。
母集団最適化アルゴリズム:電磁気的アルゴリズム(ЕМ)
この記事では、様々な最適化問題において、電磁気的アルゴリズム(EM、electroMagnetism-like Algorithm)を使用する原理、方法、可能性について解説しています。EMアルゴリズムは、大量のデータや多次元関数を扱うことができる効率的な最適化ツールです。
MQL5での価格バーの並べ替え
この記事では、価格バーを並べ替えるアルゴリズムを紹介し、EAの潜在的な購入者を欺くためにストラテジーのパフォーマンスが捏造された事例を認識するために並べ替えテストをどのように使用できるかを詳述します。
データサイエンスと機械学習(第20回):アルゴリズム取引の洞察、MQL5でのLDAとPCAの対決
MQL5取引環境での適用を解剖しながら、これらの強力な次元削減テクニックに隠された秘密を解き明かしていきます。線形判別分析(LDA)と主成分分析(PCA)のニュアンスを深く理解し、戦略開発と市場分析への影響を深く理解します。
DoEasyライブラリでの価格(第60部): 銘柄ティックデータのシリーズリスト
本稿では、単一銘柄のティックデータを格納するためのリストを作成し、EAでの必要なデータの作成と取得を確認します。さらに、使用される銘柄ごとの個別のティックデータリストでティックデータのコレクションを構成します。
MQL5でJanus factorを実装する
ゲイリー・アンダーソンは、「Janus factor」と名付けた理論に基づく市場分析法を開発しました。この理論は、トレンドを明らかにし、市場リスクを評価するために使用できる一連の指標を記述するものです。今回は、これらのツールをMQL5で実装してみます。
データサイエンスと機械学習(第16回):決定木を見直す
連載「データサイエンスと機械学習」の最新作で、決定木の複雑な世界に飛び込みましょう。戦略的な洞察を求めるトレーダーのために、この記事は包括的な総括として、市場動向の分析において決定木が果たす強力な役割に光を当てています。これらのアルゴリズム木の根と枝を探り、取引の意思決定を強化する可能性を解き明かします。決定木について新たな視点から学び、複雑な金融市場をナビゲートする上で、決定木をどのように味方にできるかを発見しましょう。
母集団最適化アルゴリズム:微小人工免疫系(Micro-AIS)
この記事では、身体の免疫系の原理に基づいた最適化手法、つまりAISを改良した微小人工免疫系(Micro Artificial Immune System:Micro-AIS)について考察します。Micro-AISは、より単純な免疫系のモデルと単純な免疫情報処理操作を用います。また、この記事では、従来のAISと比較した場合のMicro-AISの利点と欠点についても触れています。
DoEasyライブラリの時系列(第49部): 複数銘柄・複数期間の複数バッファ標準指標
本稿では、ライブラリクラスを改善して、データを表示するために複数の指標バッファを必要とする複数銘柄・複数期間標準指標を開発する機能を実装します。