リプレイシステムの開発 - 市場シミュレーション(第8回):指標のロック
この記事では、MQL5言語を使用しながら指標をロックする方法を見ていきます。非常に興味深く素晴らしい方法でそれをおこないます。
ペア取引における平均回帰による統計的裁定取引:数学で市場を攻略する
本記事では、ポートフォリオレベルの統計的アービトラージの基本的な概念を紹介します。数学の深い知識がない読者にも理解しやすく説明し、実際の運用を始めるためのコンセプトフレームワークを提案することを目的としています。記事には、動作するエキスパートアドバイザー(EA)と、1年間のバックテストに関する注記、再現用の設定ファイル(.iniファイル)も含まれています。
リプレイシステムの開発 - 市場シミュレーション(第13回):シミュレーターの誕生(III)
ここでは、次回以降の仕事に関連するいくつかの要素を簡略化します。シミュレーターが生成するランダム性を視覚化する方法も説明しましょう。
取引所価格のバイナリコードの分析(第2回):BIP39への変換とGPTモデルの記述
価格の動きを解読し続けます。では、バイナリ価格コードをBIP39に変換して得られる「市場辞典」の言語分析はどうでしょうか。本記事では、データ分析における革新的なアプローチを掘り下げ、現代の自然言語処理技術が市場言語にどのように応用できるかを考察します。
MQL5とPythonで自己最適化エキスパートアドバイザーを構築する(第5回):深層マルコフモデル
この記事では、RSIインジケーターに単純なマルコフ連鎖を適用し、インジケーターが主要なレベルを通過した後の価格の挙動を観察します。NZDJPYペアで最も強い買いシグナルと売りシグナルは、RSIがそれぞれ11~20の範囲と71~80の範囲にあるときに生成されるという結論に達しました。データを操作して、保有するデータから直接学習した最適な取引戦略を作成する方法を説明します。さらに、遷移行列を最適に使用することを学習するためにディープニューラルネットワークを訓練する方法を説明します。
ブレインストーム最適化アルゴリズム(第1部):クラスタリング
この記事では、「ブレインストーミング」と呼ばれる現象にヒントを得た、BSO (Brain Storm Optimization)と呼ばれる革新的な最適化手法を見ていきます。また、BSO法が適用するマルチモーダル最適化問題を解くための新しいアプローチについても説明します。これにより、部分集団の数を事前に決定することなく、複数の最適解を見つけることができるのです。K-MeansとK-Means++のクラスタリング法も検討します。
知っておくべきMQL5ウィザードのテクニック(第09回):K平均法とフラクタル波の組み合わせ
K平均法では、まず無作為に生成されたクラスタ重心を使用するデータセットのマクロビューに焦点を当てたプロセスとしてデータポイントを集団化するアプローチを採用し、その後ズームインしてこれらの重心を調整してデータセットを正確に表現します。これを見て、その使用例をいくつか活用していきます。
データサイエンスと機械学習(第21回):ニューラルネットワークと最適化アルゴリズムの解明
ニューラルネットワーク内部で使用される最適化アルゴリズムを解明しながら、ニューラルネットワークの核心に飛び込みます。この記事では、ニューラルネットワークの可能性を最大限に引き出し、モデルを精度と効率の新たな高みへと押し上げる重要なテクニックご紹介します。
因果推論における時系列クラスタリング
機械学習におけるクラスタリングアルゴリズムは、元データを類似した観察結果を持つグループに分けることができる重要な教師なし学習法です。これらのクラスタを用いることで、特定の市場クラスタを分析したり、新しいデータを基に最も安定したクラスタを探索したり、因果関係を推定したりすることが可能です。本稿では、Pythonによる時系列クラスタリングのための独自の手法を提案します。
MQL5のパラボリックSARトレンド戦略による取引戦略の自動化:効果的なEAの作成
この記事では、MQL5を使用してパラボリックSAR戦略を基にした取引戦略を自動化する方法について説明します。効果的なエキスパートアドバイザー(EA)を創り出します。このEAは、パラボリックSAR指標によって識別されたトレンドに基づいて取引を実行します。
母集団最適化アルゴリズム:Spiral Dynamics Optimization (SDO)アルゴリズム
本稿では、軟体動物の殻など自然界における螺旋軌道の構築パターンに基づく最適化アルゴリズム、Spiral Dynamics Optimization(SDO、螺旋ダイナミクス最適化)アルゴリズムを紹介します。著者らが提案したアルゴリズムを徹底的に修正し、改変しました。この記事では、こうした変更の必要性について考えてみたいと思います。
リプレイシステムの開発 - 市場シミュレーション(第16回):新しいクラスシステム
もっと仕事を整理する必要があります。コードはどんどん大きくなっており、今やらなければ不可能になります。分割して征服しましょう。MQL5では、このタスクを実行するのに役立つクラスを使用することができますが、そのためにはクラスに関する知識が必要です。おそらく初心者を最も混乱させるのは継承でしょう。この記事では、これらのメカニズムを実用的かつシンプルな方法で使用する方法を見ていきます。
母集団最適化アルゴリズム:SSG(Saplings Sowing and Growing up、苗木の播種と育成)
SSG(Saplings Sowing and Growing up、苗木の播種と育成)アルゴリズムは、様々な条件下で優れた生存能力を発揮する、地球上で最も回復力のある生物の1つからインスピレーションを得ています。
母集団最適化アルゴリズム:2進数遺伝的アルゴリズム(BGA)(第2回)
この記事では、自然界の生物の遺伝物質で起こる自然なプロセスをモデル化した2進数遺伝的アルゴリズム(binary genetic algorithm:BGA)を見ていきます。
一からの取引エキスパートアドバイザーの開発(第16部):Web上のデータにアクセスする(II)
Webからエキスパートアドバイザー(EA)にデータを入力する方法はそれほど明らかにはわかりません。MetaTrader 5が提供するすべての可能性を理解しなければ、そう簡単にはいきません。
母集団最適化アルゴリズム:Intelligent Water Drops (IWD)アルゴリズム
この記事では、無生物由来の興味深いアルゴリズム、つまり川床形成プロセスをシミュレーションするIntelligent Water Drops (IWD)について考察しています。このアルゴリズムのアイデアにより、従来の格付けのリーダーであったSDSを大幅に改善することが可能になりました。いつものように、新しいリーダー(修正SDSm)は添付ファイルにあります。
パターン検索への総当たり攻撃アプローチ(第V部):新鮮なアングル
この記事では、私が長い時間をかけてたどり着いた、アルゴリズム取引に対するまったく異なるアプローチを紹介します。もちろん、これはすべて私の総当たり攻撃プログラムに関係しています。これには、複数の問題を同時に解決できるように多くの変更が加えられています。とはいえ、この記事はより一般的で可能な限りシンプルなものであるため、総当たり攻撃について何も知らない読者にも適しています。
データサイエンスとML(第30回):株式市場を予測するパワーカップル、畳み込みニューラルネットワーク(CNN)と再帰型ニューラルネットワーク(RNN)
本稿では、株式市場予測における畳み込みニューラルネットワーク(CNN)と再帰型ニューラルネットワーク(RNN)の動的統合を探求します。CNNのパターン抽出能力と、RNNの逐次データ処理能力を活用します。この強力な組み合わせが、取引アルゴリズムの精度と効率をどのように高めることができるかを見てみましょう。
エキスパートアドバイザーのQ値の開発
この記事では、エキスパートアドバイザー(EA)がストラテジーテスターで表示できる品質スコアを開発する方法を見ていきます。Van TharpとSunny Harrisという2つの有名な計算方法を見てみましょう。
MQL5の圏論(第21回):LDAによる自然変換
連載21回目となるこの記事では、自然変換と、線形判別分析を使ったその実装方法について引き続き見ていきます。前回同様、シグナルクラス形式でその応用例を紹介します。
データサイエンスとML(第36回):偏った金融市場への対処
金融市場は完全に均衡しているわけではありません。強気の市場もあれば、弱気の市場もあり、どちらの方向にも不確かなレンジ相場を示す市場もあります。このようなバランスの取れていない情報を用いて機械学習モデルを訓練すると、市場が頻繁に変化するため、誤った予測を導く原因になります。この記事では、この問題に対処するためのいくつかの方法について議論していきます。
PythonとMQL5における局所的特徴量選択の適用
この記事では、Narges Armanfardらの論文「Local Feature Selection for Data Classification」で提案された特徴量選択アルゴリズムを紹介します。このアルゴリズムはPythonで実装されており、MetaTrader 5アプリケーションに統合可能なバイナリ分類モデルの構築に使用されます。
リプレイシステムの開発(第53回):物事は複雑になる(V)
今回は、あまり理解されていない重要なトピックを取り上げます。「カスタムイベント」です。これは危険です。これらの要素の長所と短所を解説します。このトピックは、MQL5やその他の言語でプロのプログラマーになりたい人にとって重要な鍵となります。ここではMQL5とMetaTrader 5に焦点を当てます。
MQL5の圏論(第19回):自然性の正方形の帰納法
自然性の正方形の帰納法を考えることで、自然変換について考察を続けます。MQL5ウィザードで組み立てられたエキスパートアドバイザー(EA)の多通貨の実装には若干の制約があるため、スクリプトでデータ分類能力を紹介しています。主な用途は、価格変動の分類とその予測です。
プライスアクション分析ツールキットの開発(第11回):Heikin Ashi Signal EA
MQL5は、ユーザーの好みに合わせてカスタマイズ可能な自動売買システムを開発するための無限の可能性を提供します。複雑な数値計算も実行できることをご存知でしょうか。この記事では、自動売買戦略として日本の平均足手法を紹介します。
知っておくべきMQL5ウィザードのテクニック(第26回):移動平均とハースト指数
ハースト指数は、時系列データが長期間にわたってどれだけ自己相関しているかを示す指標です。ハースト指数は、時系列データの長期的な特性を捉えることがわかっているため、経済や金融に限らず、幅広い時系列分析において重要な役割を果たします。本稿では、ハースト指数を移動平均線と組み合わせることで、トレーダーにとって有用なシグナルをどのように得られるかを検討し、その潜在的なメリットに焦点を当てます。
知っておくべきMQL5ウィザードのテクニック(第19回):ベイズ推定
ベイズ推定とは、新しい情報が入手可能になったときに確率仮説を更新するためにベイズの定理を採用することです。これは直感的に時系列分析への適応につながるので、シグナルだけでなく、資金管理やトレーリングストップのためのカスタムクラスを構築する際に、これをどのように利用できるか見てみましょう。
Pythonでの見せかけの回帰
見せかけの回帰は、2つの時系列がまったくの偶然で高い相関を示し、回帰分析で誤解を招く結果をもたらす場合に発生します。このような場合、変数が関連しているように見えても、その相関関係は偶然であり、モデルの信頼性は低くなります。
トレンドフォロー戦略のためのLSTMによるトレンド予測
長・短期記憶(LSTM: Long Short-Term Memory)は、長期的な依存関係を捉える能力に優れ、勾配消失問題にも対処できる、時系列データ処理に特化した再帰型ニューラルネットワーク(RNN: Recurrent Neural Network)の一種です。本記事では、LSTMを活用して将来のトレンドを予測し、トレンドフォロー型戦略のパフォーマンスを向上させる方法について解説します。内容は、主要な概念と開発の背景の紹介、MetaTrader 5からのデータ取得、そのデータを用いたPythonでのモデル学習、学習済みモデルのMQL5への統合、そして統計的なバックテストに基づく結果の分析と今後の展望までを含みます。
母集団最適化アルゴリズム:細菌採餌最適化-遺伝的アルゴリズム(BFO-GA)
本稿では、細菌採餌最適化(BFO)アルゴリズムのアイデアと遺伝的アルゴリズム(GA)で使用される技術を組み合わせ、ハイブリッドBFO-GAアルゴリズムとして最適化問題を解くための新しいアプローチを紹介します。最適解を大域的に探索するために細菌の群れを使い、局所最適解を改良するために遺伝的演算子を使用します。元のBFOとは異なり、細菌は突然変異を起こし、遺伝子を受け継ぐことができるようになっています。
リプレイシステムの開発 - 市場シミュレーション(第9回):カスタムイベント
ここでは、カスタムイベントがどのようにトリガーされ、指標でどのようにリプレイ/シミュレーションサービスの状態がレポートされるかを見ていきます。
知っておくべきMQL5ウィザードのテクニック(第13回):ExpertSignalクラスのためのDBSCAN
DBSCAN (Density-Based Spatial Clustering of Applications with Noise)は、データをグループ化する教師なし形式であり、入力パラメータをほとんど必要としません。入力パラメータは2つだけであり、K平均法などの他のアプローチと比較すると利点が得られます。ウィザードで組み立てたEAを使用してテストし、最終的に取引するために、これがどのように建設的であり得るかを掘り下げます。
MQL5の圏論(第23回):二重指数移動平均の別の見方
この記事では、前回に引き続き、日常的な取引指標を「新しい」視点で見ていくことをテーマとします。今回は、自然変換の水平合成を取り扱いますが、これに最適な指標は、今回取り上げた内容を拡大したもので、二重指数移動平均(DEMA)です。
MQL5における修正グリッドヘッジEA(第3部):シンプルヘッジ戦略の最適化(I)
この第3部では、以前に開発したシンプルヘッジとシンプルグリッドエキスパートアドバイザー(EA)を再考します。最適な戦略の使用を目指し、数学的分析と総当り攻撃アプローチを通じてシンプルヘッジEAを改良することに焦点を移します。戦略の数学的最適化について深く掘り下げ、後の回でコーディングに基づく最適化を探求するための舞台を整えます。
母集団最適化アルゴリズム:社会集団の進化(ESG)
多母集団アルゴリズムの構成原理を考えます。この種のアルゴリズムの一例として、新しいカスタムアルゴリズムであるESG (Evolution of Social Groups)を見てみましょう。このアルゴリズムの基本概念、母集団相互作用メカニズム、利点を分析し、最適化問題におけるパフォーマンスを検証します。
知っておくべきMQL5ウィザードのテクニック(第32回):正則化
正則化とは、ニューラルネットワークのさまざまな層全体に適用される離散的な重み付けに比例して、損失関数にペナルティを与える形式です。様々な正則化形式について、ウィザードで組み立てたEAを使ったテスト実行で、この正則化が持つ重要性を見てみます。