
リプレイシステムの開発(第39回):道を切り開く(III)
開発の第2段階に進む前に、いくつかのアイデアを修正する必要があります。MQL5に必要なことをさせる方法をご存知ですか。ドキュメントに書かれている以上のことをしようとしたことはありますか。そうでないなら、準備をしましょう。ここでは、ほとんどの人が普段やらないことをやるからです。

市場イベント予測のための因果ネットワーク分析(CNA)とベクトル自己回帰モデルの例
この記事では、MQL5で因果ネットワーク分析(CNA: Causal Network Analysis)とベクトル自己回帰(VAR: Vector Autoregression)デルを使用した高度な取引システムを実装するための包括的なガイドを紹介します。これらの手法の理論的背景をカバーし、取引アルゴリズムにおける主要な機能を詳細に説明し、実装のためのサンプルコードも含んでいます。

データサイエンスとML(第32回):AIモデルを最新の状態に保つ、オンライン学習
常に変化する取引の世界では、市場の変動に適応することは選択肢ではなく、必要不可欠です。新たなパターンやトレンドが日々生まれる中で、最先端の機械学習モデルでさえ、進化する環境に対応し続けることが困難になっています。本記事では、モデルを自動的に再訓練することで、その有効性を維持し、新しい市場データに柔軟に適応させる方法を解説します。

リプレイシステムの開発(第56回):モジュールの適応
モジュール同士はすでに適切に連携していますが、リプレイサービスでマウスポインタを使用しようとするとエラーが発生します。次のステップに進む前に、この問題を修正する必要があります。さらに、マウスインジケーターのコードにある別の問題も修正します。この修正によって、今回のバージョンは最終的に安定し、洗練されたものになります。

ニュース取引が簡単に(第5回):取引の実施(II)
この記事では、取引管理クラスを拡張し、ニュースイベントを取引するための買い逆指値注文(買いストップ注文)と売り逆指値注文(売りストップ注文)を追加します。また、オーバーナイト取引を防ぐために、これらの注文に有効期限の制約を実装します。さらに、逆指値注文(ストップ注文)を使用する際に発生しうるスリッページ、特にニュースイベント中に発生する可能性のあるスリッページを防止または最小限に抑えるために、スリッページ関数をエキスパートアドバイザー(EA)に組み込みます。

プライスアクション分析ツールキットの開発(第3回):Analytics Master EA
シンプルな取引スクリプトから完全に機能するエキスパートアドバイザー(EA)に移行することで、取引エクスペリエンスが大幅に向上します。チャートを自動で監視し、バックグラウンドで重要な計算を実行し、さらに2時間ごとに定期的な更新を提供するシステムを想像してみてください。このEAは、的確な取引判断を下すために不可欠な主要指標を分析し、常に最新の情報を取得して戦略を効果的に調整できるようにします。

彗尾アルゴリズム(CTA)
この記事では、ユニークな宇宙物体である彗星と、太陽に接近する際に形成されるその印象的な尾にインスパイアされた「彗尾最適化アルゴリズム(CTA: Comet Tail Algorithm)」について考察します。このアルゴリズムは、彗星とその尾の運動の概念に基づき、最適化問題の最適解を見つけることを目的としています。

最適化アルゴリズムの効率における乱数生成器の品質の役割
この記事では、メルセンヌ・ツイスタ乱数生成器を取り上げ、MQL5の標準的な乱数生成器と比較します。また、乱数生成器の品質が最適化アルゴリズムの結果に与える影響についても調べます。

プライスアクション分析ツールキットの開発(第2回): Analytical Commentスクリプト
プライスアクションを簡素化するというビジョンに沿って、市場分析を大幅に強化し、十分な情報に基づいた意思決定を支援する新しいツールを導入できることを嬉しく思います。このツールは、前日の価格、重要な支持と抵抗のレベル、取引量などの主要なテクニカル指標を表示し、チャート上に視覚的なヒントを自動的に生成します。

MQL5における段階的特徴量選択
この記事では、MQL5で実装された段階的特徴量選択の修正バージョンを紹介します。このアプローチは、Timothy Masters著の「Modern Data Mining Algorithms in C++ and CUDA C」で概説されている手法に基づいています。

ケリー基準とモンテカルロシミュレーションを使用したポートフォリオリスクモデル
数十年にわたり、トレーダーは破産リスクを最小限に抑えつつ長期的な資産成長を最大化する手法として、ケリー基準の公式を活用してきました。しかし、単一のバックテスト結果に基づいてケリー基準を盲目的に適用することは、個人トレーダーにとって非常に危険です。というのも、実際の取引では時間の経過とともに取引優位性が薄れ、過去の実績は将来の結果を保証するものではないからです。本記事では、Pythonによるモンテカルロシミュレーションの結果を取り入れ、MetaTrader 5上で1つ以上のエキスパートアドバイザー(EA)にケリー基準を現実的に適用するためのリスク配分アプローチを紹介します。

MQL5取引ツールキット(第4回):履歴管理EX5ライブラリの開発
詳細なステップバイステップのアプローチで拡張履歴管理EX5ライブラリを作成し、MQL5を使用してクローズされたポジション、注文、取引履歴を取得、処理、分類、並べ替え、分析、管理する方法を学びます。

リプレイシステムの開発(第42回):Chart Traderプロジェクト(I)
もっと面白いものを作りましょう。ネタバレはしたくないので、理解を深めるために記事を読んでください。リプレイ/シミュレーターシステムの開発に関する本連載の最初の段階から、私は、開発中のシステムと実際の市場の両方で同じようにMetaTrader 5プラットフォームを使用することがアイディアであると述べてきました。これが適切におこなわれることが重要です。ある道具を使用して訓練して戦い方を学んだ末、戦いの最中に別の道具を使用しなければならないというようなことは誰もしたくありません。

亀甲進化アルゴリズム(TSEA)
これは、亀の甲羅の進化にインスパイアされたユニークな最適化アルゴリズムです。TSEAアルゴリズムは、問題に対する最適解を表す構造化された皮膚領域が徐々に形成される様子をエミュレートします。最良の解は「硬く」なり、外側に近い位置に配置され、成功しなかった解は「柔らかい」ままで内側に留まります。このアルゴリズムは、質と距離に基づく解のクラスタリングを利用し、成功率の低い選択肢を保持しながら、柔軟性と適応性を提供します。

リプレイシステムの開発(第43回):Chart Traderプロジェクト(II)
プログラミングを学びたいと夢見る人のほとんどは、実際に自分が何をしているのかわかっていません。彼らの活動は、ある方法で物事を創造しようとすることから成っています。しかし、プログラミングとは、適切な解決策を仕立てることではありません。このようなやり方は、解決策よりも多くの問題を引き起こす可能性があります。ここでは、より高度で、それゆえに異なることをします。

リプレイシステムの開発(第54回):最初のモジュールの誕生
この記事では、リプレイ/シミュレーターシステムで使用するための、他の目的にも汎用的に使用できる、実際に機能するモジュールの最初のものを組み立てる方法について説明します。マウスモジュールです。

リプレイシステムの開発(第55回):コントロールモジュール
この記事では、開発中のメッセージシステムに統合できるように、コントロールインジケーターを実装します。それほど難しくはありませんが、このモジュールの初期化について理解しておくべき細かい点がいくつかあります。ここで提示される資料は教育目的のみに使用されます。示された概念を学習し習得する以外の目的での利用は決して想定されていません。

母集団最適化アルゴリズム:極値から抜け出す力(第I部)
本稿では、母集団最適化アルゴリズムの挙動を、集団の多様性が低い場合に効率的に極小値を脱出し、最大値に到達する能力という観点から検証することを目的としたユニークな実験を紹介します。この方向性で取り組むことで、ユーザーが設定した座標を出発点として、どの特定のアルゴリズムが検索を成功させることができるのか、またその成功にどのような要因が影響するのかについて、さらなる洞察が得られるでしょう。

知っておくべきMQL5ウィザードのテクニック(第49回):近接方策最適化による強化学習
近接方策最適化は、強化学習におけるアルゴリズムの一つで、モデルの安定性を確保するために、しばしばネットワーク形式で非常に小さな増分で方策を更新します。前回の記事と同様に、ウィザードで作成したエキスパートアドバイザー(EA)において、これがどのように役立つかを探ります。

リプレイシステムの開発(第49回):物事は複雑になる(I)
この記事では、物事は少し複雑になります。前回の記事で紹介した内容を使用して、ユーザーが独自のテンプレートを使用できるようにテンプレート ファイルを開きます。ただし、MetaTrader 5の負荷を軽減するために指標を改良していく予定なので、変更は徐々におこなっていく予定です。

ボラティリティを予測するための計量経済学ツール:GARCHモデル
この記事では、条件付き異分散性(GARCH)という非線形モデルの特性について説明します。また、このモデルを基に、一歩先のボラティリティを予測するためのiGARCHインジケーターを構築しました。モデルのパラメータ推定には、ALGLIB数値解析ライブラリを使用しています。

PythonとMQL5による多銘柄分析(第2回):ポートフォリオ最適化のための主成分分析
取引口座のリスク管理は、すべてのトレーダーにとっての課題です。MetaTrader 5で、さまざまな銘柄に対して高リスク、中リスク、低リスクモードを動的に学習する取引アプリケーションを開発するにはどうすればよいでしょうか。PCA(主成分分析)を使用することで、ポートフォリオの分散をより効果的に管理できるようになります。MetaTrader 5から取得した市場データを基に、これら3つのリスクモードを学習するアプリケーションの作成方法を説明します。

知っておくべきMQL5ウィザードのテクニック(第43回):SARSAによる強化学習
SARSAは、State-Action-Reward-State-Actionの略で、強化学習を実装する際に使用できる別のアルゴリズムです。Q学習とDQNで見たように、ウィザードで組み立てられたエキスパートアドバイザー(EA)の中で、これを単なる訓練メカニズムとしてではなく、独立したモデルとしてどのように実装できるかを検討します。

リプレイシステムの開発(第62回):サービスの再生(III)
この記事では、実際のデータを使用する際にアプリケーションのパフォーマンスに影響を及ぼす可能性のある「ティック過剰」の問題について取り上げます。このティック過剰は、1分足を適切なタイミングで構築するうえで支障となることがよくあります。

母集団アルゴリズムのハイブリダイゼーション:逐次構造と並列構造
ここでは、最適化アルゴリズムのハイブリダイゼーションの世界に飛び込み、3つの主要なタイプ、すなわち戦略混合、逐次ハイブリダイゼーション、並列ハイブリダイゼーションについて見ていきます。関連する最適化アルゴリズムを組み合わせ、テストする一連の実験をおこないます。

リプレイシステムの開発(第50回):物事は複雑になる(II)
チャートIDの問題を解決すると同時に、ユーザーが希望する資産の分析とシミュレーションに個人用テンプレートを使用できるようにする機能を提供し始めます。ここで提示される資料は教育目的のみであり、提示される概念の学習および習得以外の目的には決して適用されないものとします。

リプレイシステムの開発(第59回):新たな未来
さまざまなアイデアを適切に理解することで、より少ない労力でより多くのことを実現できます。この記事では、サービスがチャートと対話する前にテンプレートを構成する必要がある理由について説明します。また、マウスポインタを改良し、より多くの機能を持たせることについても考察します。

知っておくべきMQL5ウィザードのテクニック(第35回):サポートベクトル回帰
サポートベクトル回帰(SVR)は、2つのデータセット間の関係を最も適切に表現する関数または「超平面」を見つけるための理想的な手法です。本稿では、MQL5ウィザードのカスタムクラス内での時系列予測において、この手法を活用することを試みます。

効率的な最適化のバックボーンとしての母集団アルゴリズムの基本クラス
この記事は、最適化手法の適用を単純化するために、様々な母集団アルゴリズムを1つのクラスにまとめるというユニークな研究の試みです。このアプローチは、ハイブリッド型を含む新しいアルゴリズム開発の機会を開くだけでなく、普遍的な基本テストスタンドの構築にもつながります。このスタンドは、特定のタスクに応じて最適なアルゴリズムを選択するための重要なツールとなります。

ニュース取引が簡単に(第4回):パフォーマンス向上
この記事では、ストラテジーテスターでエキスパートアドバイザー(EA)のランタイムを改善する方法について掘り下げていきます。これらのニュースイベントの時間は、指定された時間内にアクセスされます。これにより、EAはボラティリティの高い環境でも低い環境でも、イベントドリブン取引を効率的に管理できます。

知っておくべきMQL5ウィザードのテクニック(第34回):非従来型RBMによる価格の埋め込み
制限ボルツマンマシンは、1980年代半ば、計算資源が非常に高価だった時代に開発されたニューラルネットワークの一種です。当初は、入力された訓練データセットの次元を削減し、隠れた確率や特性を捉えるために、ギブスサンプリングとコントラストダイバージェンス(Contrastive Divergence)に依存していました。RBMが予測用の多層パーセプトロンに価格を「埋め込む」場合、バックプロパゲーションがどのように同様の性能を発揮できるかを検証します。

MQL5とデータ処理パッケージの統合(第3回):データ可視化の強化
この記事では、基本的なチャートの枠を超え、インタラクティブ性、データの層化、ダイナミックな要素といった機能を組み込むことで、トレーダーがトレンド、パターン、相関関係をより効果的に探求できるようにする、データ可視化の高度化について解説します。

人工蜂の巣アルゴリズム(ABHA):理論と方法
この記事では、2009年に開発された人工蜂の巣アルゴリズム(ABHA)について説明します。このアルゴリズムは、連続的な最適化問題を解決することを目的としています。この記事では、蜂がそれぞれの役割を担って効率的に資源を見つける蜂のコロニーの行動から、ABHAがどのようにインスピレーションを得ているかを探ります。

母集団最適化アルゴリズム:極値から抜け出す力(第II部)
母集団の多様性が低いときに効率的に極小値を脱出して最大値に到達する能力という観点から、母集団最適化アルゴリズムの挙動を調べることを目的とした実験を続けます。研究結果が提供されます。

プライスアクション分析ツールキットの開発(第5回):Volatility Navigator EA
市場の方向性を判断するのは簡単ですが、いつエントリーするかを知るのは難しい場合があります。連載「プライスアクション分析ツールキットの開発」の一環として、エントリーポイント、テイクプロフィットレベル、ストップロスの配置を提供する別のツールを紹介できることを嬉しく思います。これを実現するために、MQL5プログラミング言語を利用しました。この記事では、各ステップについて詳しく見ていきましょう。

スイングエントリーモニタリングEAの開発
年末が近づくと、多くの長期トレーダーは市場の過去を振り返り、その動きや傾向を分析して、将来の動向を予測しようとします。この記事では、MQL5を用いて長期エントリーの監視をおこなうエキスパートアドバイザー(EA)の開発について解説します。手動取引や自動監視システムの不在によって、長期的な取引チャンスを逃してしまうという課題に取り組むことが本稿の目的です。今回は、特に取引量の多い通貨ペアの一つを例に挙げ、効果的な戦略を立案しながらソリューションを構築していきます。