Artikel über Datenanalyse und Statistik in MQL5

icon

Artikel über mathematische Modelle und die Gesetze der Wahrscheinlichkeit können für viele Börsenhändler interessant sein. Denn Mathematik liegt technischer Indikatoren zugrunde, und Kenntnisse in Statistik braucht man, um die Ergebnisse des Handels zu analysieren und Strategien zu entwickeln.

Lesen Sie über die Fuzzylogik, digitale Filter, Marktprofil, Kohonenkarten, neuronales Gas und andere Werkzeuge, die man für den Handel verwenden kann.

Neuer Artikel
letzte | beste
preview
Volumetrische neuronale Netzwerkanalyse als Schlüssel zu zukünftigen Trends

Volumetrische neuronale Netzwerkanalyse als Schlüssel zu zukünftigen Trends

Der Artikel untersucht die Möglichkeit, die Preisprognose auf der Grundlage der Analyse des Handelsvolumens zu verbessern, indem die Prinzipien der technischen Analyse mit der Architektur des neuronalen Netzes LSTM integriert werden. Besonderes Augenmerk wird auf die Erkennung und Interpretation anomaler Volumina, die Verwendung von Clustern und die Erstellung von Merkmalen auf der Grundlage von Volumina und deren Definition im Rahmen des maschinellen Lernens gelegt.
preview
Entwicklung eines Toolkits zur Analyse von Preisaktionen (Teil 20): Externer Fluss (IV) - Correlation Pathfinder

Entwicklung eines Toolkits zur Analyse von Preisaktionen (Teil 20): Externer Fluss (IV) - Correlation Pathfinder

Der Correlation Pathfinder bietet als Teil der Serie der Entwicklung eines Toolkits zur Analyse von Preisaktionen einen neuen Ansatz zum Verständnis der Dynamik von Währungspaaren. Dieses Tool automatisiert die Datenerfassung und -analyse und bietet einen Einblick in die Wechselwirkungen zwischen Paaren wie EUR/USD und GBP/USD. Verbessern Sie Ihre Handelsstrategie mit praktischen Echtzeit-Informationen, die Ihnen helfen, Risiken zu managen und Chancen effektiver zu erkennen.
preview
Entwicklung eines Replay Systems (Teil 58): Wiederaufnahme der Arbeit am Dienst

Entwicklung eines Replay Systems (Teil 58): Wiederaufnahme der Arbeit am Dienst

Nach einer Pause in der Entwicklung und Verbesserung des Dienstes für Replay/Simulator nehmen wir die Arbeit daran wieder auf. Da wir nun die Verwendung von Ressourcen wie Terminalglobals aufgegeben haben, müssen wir einige Teile des Systems komplett umstrukturieren. Keine Sorge, dieser Prozess wird im Detail erklärt, sodass jeder die Entwicklung unseres Dienstes verfolgen kann.
preview
Portfolio-Optimierung am Devisenmarkt: Synthese von VaR und die Markowitz-Theorie

Portfolio-Optimierung am Devisenmarkt: Synthese von VaR und die Markowitz-Theorie

Wie funktioniert der Portfoliohandel im Forexmarkt? Wie lassen sich die Portfoliotheorie von Markowitz zur Optimierung des Portfolioanteils und das VaR-Modell zur Optimierung des Portfoliorisikos zusammenführen? Wir erstellen einen auf der Portfoliotheorie basierenden Code, der einerseits ein geringes Risiko und andererseits eine akzeptable langfristige Rentabilität gewährleistet.
preview
Ein neuer Ansatz für nutzerdefinierte Kriterien in den Optimierungen (Teil 1): Beispiele für Aktivierungsfunktionen

Ein neuer Ansatz für nutzerdefinierte Kriterien in den Optimierungen (Teil 1): Beispiele für Aktivierungsfunktionen

Der erste einer Reihe von Artikeln, die sich mit der Mathematik der nutzerdefinierten Kriterien befassen, mit besonderem Schwerpunkt auf nichtlinearen Funktionen, die in neuronalen Netzen verwendet werden, MQL5-Code für die Implementierung und die Verwendung von gezielten und korrigierenden Offsets.
preview
Atmosphere Clouds Model Optimization (ACMO): Die Praxis

Atmosphere Clouds Model Optimization (ACMO): Die Praxis

In diesem Artikel werden wir uns weiter mit der Implementierung des ACMO-Algorithmus (Atmospheric Cloud Model Optimization) beschäftigen. Wir werden insbesondere zwei Schlüsselaspekte erörtern: die Bewegung von Wolken in Tiefdruckgebiete und die Regensimulation, einschließlich der Initialisierung von Tröpfchen und ihrer Verteilung auf die Wolken. Wir werden uns auch mit anderen Methoden befassen, die eine wichtige Rolle bei der Verwaltung des Zustands von Wolken und der Gewährleistung ihrer Interaktion mit der Umwelt spielen.
preview
Eine Einführung in die Kurven von Receiver Operating Characteristic

Eine Einführung in die Kurven von Receiver Operating Characteristic

ROC-Kurven sind grafische Darstellungen, die zur Bewertung der Leistung von Klassifikatoren verwendet werden. Obwohl ROC-Diagramme relativ einfach zu handhaben sind, gibt es bei ihrer Verwendung in der Praxis häufig Missverständnisse und Fallstricke. Dieser Artikel bietet eine Einführung in ROC-Diagramme als Hilfsmittel für Praktiker, die die Leistungsbewertung von Klassifikatoren verstehen wollen.
preview
Datenwissenschaft und ML (Teil 39): News + Künstliche Intelligenz, würden Sie darauf wetten?

Datenwissenschaft und ML (Teil 39): News + Künstliche Intelligenz, würden Sie darauf wetten?

Nachrichten treiben die Finanzmärkte an, insbesondere wichtige Veröffentlichungen wie die Non-Farm Payrolls (NFP, Beschäftigung außerhalb der Landwirtschaft). Wir alle haben schon erlebt, wie eine einzige Schlagzeile starke Kursbewegungen auslösen kann. In diesem Artikel befassen wir uns mit der leistungsstarken Schnittmenge von Nachrichtendaten und künstlicher Intelligenz.
preview
Wechselseitige Information als Kriterium für die schrittweise Auswahl von Merkmalen

Wechselseitige Information als Kriterium für die schrittweise Auswahl von Merkmalen

In diesem Artikel stellen wir eine MQL5-Implementierung der schrittweisen Merkmalsauswahl vor, die auf der wechselseitigen Information zwischen einer optimalen Prädiktorenmenge und einer Zielvariablen basiert.
preview
Datenwissenschaft und ML (Teil 34): Zeitreihenzerlegung, den Aktienmarkt auf den Kern herunterbrechen.

Datenwissenschaft und ML (Teil 34): Zeitreihenzerlegung, den Aktienmarkt auf den Kern herunterbrechen.

In einer Welt, die von verrauschten und unvorhersehbaren Daten überschwemmt wird, kann es schwierig sein, aussagekräftige Muster zu erkennen. In diesem Artikel befassen wir uns mit der saisonalen Dekomposition, einer leistungsstarken Analysetechnik, die dabei hilft, Daten in ihre Hauptkomponenten zu zerlegen: Trend, saisonale Muster und Rauschen. Wenn wir die Daten auf diese Weise aufschlüsseln, können wir verborgene Erkenntnisse aufdecken und mit klareren, besser interpretierbaren Informationen arbeiten.
preview
Entwicklung eines Replay-Systems (Teil 65): Abspielen des Dienstes (VI)

Entwicklung eines Replay-Systems (Teil 65): Abspielen des Dienstes (VI)

In diesem Artikel werden wir uns ansehen, wie das Mauszeigerproblem bei der Verwendung in Verbindung mit einer Wiedergabe-/Simulationsanwendung implementiert und gelöst werden kann. Der hier dargestellte Inhalt ist ausschließlich für Bildungszwecke bestimmt. Die Anwendung sollte unter keinen Umständen zu einem anderen Zweck als zum Erlernen und Beherrschen der vorgestellten Konzepte verwendet werden.
preview
Entwicklung eines Toolkit zur Analyse von Preisaktionen (Teil 16): Einführung in die Quarters Theory (II) - Intrusion Detector EA

Entwicklung eines Toolkit zur Analyse von Preisaktionen (Teil 16): Einführung in die Quarters Theory (II) - Intrusion Detector EA

In unserem letzten Artikel haben wir ein einfaches Skript namens „Quarters Drawer“ vorgestellt. Auf dieser Grundlage gehen wir nun den nächsten Schritt und erstellen einen Monitor Expert Advisor (EA), der diese Quarter verfolgt und einen Überblick über mögliche Marktreaktionen auf diesen Niveaus bietet. Begleiten Sie uns in diesem Artikel bei der Entwicklung eines Tools zur Zonenerkennung.
preview
Entwicklung eines Replay-Systems (Teil 61): Den Dienst abspielen (II)

Entwicklung eines Replay-Systems (Teil 61): Den Dienst abspielen (II)

In diesem Artikel werden wir uns mit Änderungen befassen, die einen effizienteren und sichereren Betrieb des Replay-/Simulationssystems ermöglichen. Ich möchte auch nicht die Aufmerksamkeit derjenigen vernachlässigen, die das Beste durch die Verwendung von Klassen machen wollen. Darüber hinaus werden wir ein spezielles Problem in MQL5 betrachten, das die Codeleistung bei der Arbeit mit Klassen verringert, und erklären, wie man es lösen kann.
preview
Algorithmus der Atomic Orbital Search (AOS)

Algorithmus der Atomic Orbital Search (AOS)

Der Artikel befasst sich mit dem Algorithmus der atomare Orbitalsuche (AOS), der die Konzepte des atomaren Orbitalmodells nutzt, um die Suche nach Lösungen zu simulieren. Der Algorithmus basiert auf Wahrscheinlichkeitsverteilungen und der Dynamik von Wechselwirkungen im Atom. In dem Artikel werden die mathematischen Aspekte von AOS im Detail erörtert, einschließlich der Aktualisierung der Positionen der Lösungsvorschläge und der Mechanismen der Energieaufnahme und -abgabe. AOS eröffnet neue Horizonte für die Anwendung von Quantenprinzipien auf Computerprobleme, indem es einen innovativen Ansatz zur Optimierung bietet.
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 52): Accelerator Oszillator

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 52): Accelerator Oszillator

Der Accelerator Oszillator ist ein weiterer Indikator von Bill Williams, der die Beschleunigung der Preisdynamik und nicht nur ihr Tempo verfolgt. Ähnlich wie der Awesome Oszillator, den wir in einem kürzlich erschienenen Artikel besprochen haben, versucht er, die Verzögerungseffekte zu vermeiden, indem er sich mehr auf die Beschleunigung als auf die Geschwindigkeit konzentriert. Wir untersuchen wie immer, welche Muster wir daraus ableiten können und welche Bedeutung sie für den Handel mit einem von einem Assistenten zusammengestellten Expert Advisor haben könnten.
preview
Datenwissenschaft und ML (Teil 33): Pandas Dataframe in MQL5, Vereinfachung der Datensammlung für ML-Nutzung

Datenwissenschaft und ML (Teil 33): Pandas Dataframe in MQL5, Vereinfachung der Datensammlung für ML-Nutzung

Bei der Arbeit mit maschinellen Lernmodellen ist es wichtig, die Konsistenz der für Training, Validierung und Tests verwendeten Daten sicherzustellen. In diesem Artikel werden wir unsere eigene Version der Pandas-Bibliothek in MQL5 erstellen, um einen einheitlichen Ansatz für den Umgang mit maschinellen Lerndaten zu gewährleisten und sicherzustellen, dass innerhalb und außerhalb von MQL5, wo der Großteil des Trainings stattfindet, dieselben Daten verwendet werden.
preview
Nachrichtenhandel leicht gemacht (Teil 6): Ausführen des Handels (III)

Nachrichtenhandel leicht gemacht (Teil 6): Ausführen des Handels (III)

In diesem Artikel wird die Nachrichtenfilterung für einzelne Nachrichtenereignisse auf der Grundlage ihrer IDs implementiert. Darüber hinaus werden frühere SQL-Abfragen verbessert, um zusätzliche Informationen zu liefern oder die Laufzeit der Abfrage zu verkürzen. Außerdem wird der in den vorangegangenen Artikeln erstellte Code funktionsfähig gemacht.
preview
Entwicklung eines Replay-Systems (Teil 64): Abspielen des Dienstes (V)

Entwicklung eines Replay-Systems (Teil 64): Abspielen des Dienstes (V)

In diesem Artikel werden wir uns ansehen, wie zwei Fehler im Code behoben werden können. Ich werde jedoch versuchen, sie so zu erklären, dass Sie als Programmieranfänger verstehen, dass die Dinge nicht immer so laufen, wie Sie es erwarten. Wie auch immer, dies ist eine Gelegenheit, zu lernen. Der hier dargestellte Inhalt ist ausschließlich für Bildungszwecke bestimmt. Dieser Antrag sollte keinesfalls als endgültiges Dokument betrachtet werden, das lediglich der Erkundung der vorgestellten Konzepte dient.
preview
Ensemble-Methoden zur Verbesserung von Klassifizierungsaufgaben in MQL5

Ensemble-Methoden zur Verbesserung von Klassifizierungsaufgaben in MQL5

In diesem Artikel stellen wir die Implementierung mehrerer Ensemble-Klassifikatoren in MQL5 vor und erörtern ihre Wirksamkeit in verschiedenen Situationen.
preview
Entwicklung eines Replay Systems (Teil 55): Steuermodul

Entwicklung eines Replay Systems (Teil 55): Steuermodul

In diesem Artikel werden wir einen Kontrollindikator implementieren, damit er in das von uns entwickelte Nachrichtensystem integriert werden kann. Obwohl es nicht sehr schwierig ist, gibt es einige Details, die bei der Initialisierung dieses Moduls beachtet werden müssen. Das hier vorgestellte Material dient ausschließlich zu Bildungszwecken. Es sollte auf keinen Fall als Anwendung für einen anderen Zweck als das Lernen und Beherrschen der gezeigten Konzepte betrachtet werden.
preview
Erstellen eines Handelsadministrator-Panels in MQL5 (Teil XI): Modernes Merkmal Kommunikationsschnittstelle (I)

Erstellen eines Handelsadministrator-Panels in MQL5 (Teil XI): Modernes Merkmal Kommunikationsschnittstelle (I)

Heute konzentrieren wir uns auf die Verbesserung der Messaging-Schnittstelle des Kommunikationspanels, um sie an die Standards moderner, leistungsstarker Kommunikationsanwendungen anzupassen. Diese Verbesserung wird durch eine Aktualisierung der Klasse CommunicationsDialog erreicht. Begleiten Sie uns in diesem Artikel und in der Diskussion, wenn wir die wichtigsten Erkenntnisse erkunden und die nächsten Schritte bei der Weiterentwicklung der Schnittstellenprogrammierung mit MQL5 skizzieren.
preview
Entwicklung des Price Action Analysis Toolkit (Teil 22): Korrelation Dashboard

Entwicklung des Price Action Analysis Toolkit (Teil 22): Korrelation Dashboard

Bei diesem Tool handelt es sich um ein Korrelations-Dashboard, das Korrelationskoeffizienten für mehrere Währungspaare in Echtzeit berechnet und anzeigt. Durch die Visualisierung, wie sich Paare im Verhältnis zueinander bewegen, fügt es Ihrer Preisaktionsanalyse wertvollen Kontext hinzu und hilft Ihnen, die Dynamik zwischen den Märkten zu antizipieren. Lesen Sie weiter, um seine Funktionen und Anwendungen kennenzulernen.
preview
Atmosphere Clouds Model Optimization (ACMO): Theorie

Atmosphere Clouds Model Optimization (ACMO): Theorie

Der Artikel ist dem metaheuristischen Algorithmus der Optimierung des Atmosphärenwolkenmodells (ACMO) gewidmet, der das Verhalten von Wolken simuliert, um Optimierungsprobleme zu lösen. Der Algorithmus nutzt die Prinzipien der Wolkenerzeugung, -bewegung und -ausbreitung und passt sich den „Wetterbedingungen“ im Lösungsraum an. Der Artikel zeigt, wie die meteorologische Simulation des Algorithmus optimale Lösungen in einem komplexen Möglichkeitsraum findet, und beschreibt detailliert die Phasen des ACMO-Betriebs, einschließlich der Vorbereitung des „Himmels“, der Wolkenentstehung, der Wolkenbewegung und der Regenkonzentration.
preview
Merkmalsauswahl und Dimensionenreduktion mit Hilfe von Hauptkomponenten

Merkmalsauswahl und Dimensionenreduktion mit Hilfe von Hauptkomponenten

Der Artikel befasst sich mit der Implementierung eines modifizierten Algorithmus der „Forward Selection Component Analysis“, der sich auf die von Luca Puggini und Sean McLoone in „Forward Selection Component Analysis: Algorithms and Applications“ vorgestellte Forschung stützt.
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 55): SAC mit priorisierter Erfahrungswiederholung

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 55): SAC mit priorisierter Erfahrungswiederholung

Replay-Puffer sind beim Reinforcement Learning besonders wichtig bei Off-Policy-Algorithmen wie DQN oder SAC. Damit wird das Sampling-Verfahren dieses Speicherpuffers in den Mittelpunkt gerückt. Während bei den Standardoptionen von SAC beispielsweise eine zufällige Auswahl aus diesem Puffer verwendet wird, wird bei den priorisierten Erfahrungswiederholungspuffern eine Feinabstimmung vorgenommen, indem eine Auswahl aus dem Puffer auf der Grundlage eines TD-Scores erfolgt. Wir gehen auf die Bedeutung des Reinforcement Learning ein und untersuchen wie immer nur diese Hypothese (nicht die Kreuzvalidierung) in einem von einem Assistenten zusammengestellten Expert Advisor.
preview
Entwicklung eines Replay-Systems (Teil 71): Das richtige Bestimmen der Zeit (IV)

Entwicklung eines Replay-Systems (Teil 71): Das richtige Bestimmen der Zeit (IV)

In diesem Artikel werden wir uns ansehen, wie man das, was im vorigen Artikel über unseren Wiedergabe-/Simulationsdienst gezeigt wurde, implementiert. Wie bei vielen anderen Dingen im Leben sind auch hier Probleme vorprogrammiert. Und dieser Fall war keine Ausnahme. In diesem Artikel werden wir die Dinge weiter verbessern. Der hier dargestellte Inhalt ist ausschließlich für Bildungszwecke bestimmt. Die Anwendung sollte unter keinen Umständen zu einem anderen Zweck als zum Erlernen und Beherrschen der vorgestellten Konzepte verwendet werden.
preview
Entwicklung eines Replay-Systems (Teil 72): Eine ungewöhnliche Kommunikation (I)

Entwicklung eines Replay-Systems (Teil 72): Eine ungewöhnliche Kommunikation (I)

Was wir heute schaffen, wird schwer zu verstehen sein. Deshalb werde ich in diesem Artikel nur über die Anfangsphase sprechen. Bitte lesen Sie diesen Artikel aufmerksam, er ist eine wichtige Voraussetzung, bevor wir zum nächsten Schritt übergehen. Der Zweck dieses Materials ist rein didaktisch, da wir nur die vorgestellten Konzepte studieren und beherrschen werden, ohne praktische Anwendung.
preview
Entwicklung eines Replay-Systems (Teil 73): Eine ungewöhnliche Kommunikation (II)

Entwicklung eines Replay-Systems (Teil 73): Eine ungewöhnliche Kommunikation (II)

In diesem Artikel werden wir uns ansehen, wie Informationen in Echtzeit zwischen dem Indikator und dem Dienst übertragen werden können, und wir werden auch verstehen, warum bei der Änderung des Zeitrahmens Probleme auftreten können und wie man sie lösen kann. Als Bonus erhalten Sie Zugang zur neuesten Version der Wiedergabe-/Simulations-App.
preview
Entwicklung eines Replay-Systems (Teil 63): Abspielen des Dienstes (IV)

Entwicklung eines Replay-Systems (Teil 63): Abspielen des Dienstes (IV)

In diesem Artikel werden wir endlich die Probleme mit der Simulation von Ticks auf einem einminütigen Balken lösen, sodass sie mit echten Ticks koexistieren können. Dies wird uns helfen, Probleme in der Zukunft zu vermeiden. Das hier vorgestellte Material dient ausschließlich zu Bildungszwecken. Die Anwendung sollte unter keinen Umständen zu einem anderen Zweck als zum Erlernen und Beherrschen der vorgestellten Konzepte verwendet werden.
preview
Anwendung der lokalisierten Merkmalsauswahl in Python und MQL5

Anwendung der lokalisierten Merkmalsauswahl in Python und MQL5

In diesem Artikel wird ein Algorithmus zur Merkmalsauswahl untersucht, der in dem Artikel „Local Feature Selection for Data Classification“ von Narges Armanfard et al. Der Algorithmus ist in Python implementiert, um binäre Klassifizierungsmodelle zu erstellen, die in MetaTrader 5-Anwendungen für Inferenzen integriert werden können.
preview
Erstellen eines Handelsadministrator-Panels in MQL5 (Teil IX): Code Organisation (I)

Erstellen eines Handelsadministrator-Panels in MQL5 (Teil IX): Code Organisation (I)

Diese Diskussion befasst sich mit den Herausforderungen, die bei der Arbeit mit großen Codebasen auftreten. Wir werden die besten Praktiken für die Codeorganisation in MQL5 untersuchen und einen praktischen Ansatz zur Verbesserung der Lesbarkeit und Skalierbarkeit des Quellcodes unseres Trading Administrator Panels implementieren. Darüber hinaus wollen wir wiederverwendbare Code-Komponenten entwickeln, von denen andere Entwickler bei der Entwicklung ihrer Algorithmen profitieren können. Lesen Sie weiter und beteiligen Sie sich an der Diskussion.
preview
Erstellen eines Handelsadministrator-Panels in MQL5 (Teil IX): Code Organisation (II): Modularisierung

Erstellen eines Handelsadministrator-Panels in MQL5 (Teil IX): Code Organisation (II): Modularisierung

In dieser Diskussion gehen wir einen Schritt weiter, indem wir unser MQL5-Programm in kleinere, besser handhabbare Module aufteilen. Diese modularen Komponenten werden dann in das Hauptprogramm integriert, um dessen Organisation und Wartbarkeit zu verbessern. Dieser Ansatz vereinfacht die Struktur unseres Hauptprogramms und macht die einzelnen Komponenten in anderen Expert Advisors (EAs) und Indikatorentwicklungen wiederverwendbar. Durch diesen modularen Aufbau schaffen wir eine solide Grundlage für künftige Erweiterungen, von denen sowohl unser Projekt als auch die breitere Entwicklergemeinschaft profitiert.
preview
Datenwissenschaft und ML (Teil 38): AI Transfer Learning auf den Forexmärkten

Datenwissenschaft und ML (Teil 38): AI Transfer Learning auf den Forexmärkten

Die KI-Durchbrüche, die die Schlagzeilen beherrschen, von ChatGPT bis hin zu selbstfahrenden Autos, entstehen nicht durch isolierte Modelle, sondern durch kumulatives Wissen, das aus verschiedenen Modellen oder gemeinsamen Bereichen übertragen wird. Jetzt kann derselbe Ansatz "einmal lernen, überall anwenden" angewandt werden, um unsere KI-Modelle im algorithmischen Handel zu transformieren. In diesem Artikel erfahren wir, wie wir die aus verschiedenen Instrumenten gewonnenen Informationen nutzen können, um mit Hilfe von Transfer Learning die Vorhersagen für andere Instrumente zu verbessern.
preview
Entwicklung eines Replay-Systems (Teil 74): Neuer Chart-Handel (I)

Entwicklung eines Replay-Systems (Teil 74): Neuer Chart-Handel (I)

In diesem Artikel werden wir den letzten Code, der in dieser Serie über Chart Trade gezeigt wurde, ändern. Diese Änderungen sind notwendig, um den Code an das aktuelle Wiedergabe-/Simulationssystemmodell anzupassen. Der hier dargestellte Inhalt ist ausschließlich für Bildungszwecke bestimmt. Die Anwendung sollte unter keinen Umständen zu einem anderen Zweck als zum Erlernen und Beherrschen der vorgestellten Konzepte verwendet werden.
preview
Vom Neuling zum Experten: Autogeometrisches Analysesystem

Vom Neuling zum Experten: Autogeometrisches Analysesystem

Geometrische Muster bieten Händlern eine prägnante Methode zur Interpretation von Kursbewegungen. Viele Analysten zeichnen Trendlinien, Rechtecke und andere Formen mit der Hand und treffen ihre Handelsentscheidungen dann auf der Grundlage der von ihnen gesehenen Formationen. In diesem Artikel untersuchen wir eine automatisierte Alternative: die Nutzung von MQL5 zur Erkennung und Analyse der gängigsten geometrischen Muster. Wir schlüsseln die Methodik auf, erörtern Details der Implementierung und zeigen auf, wie die automatische Mustererkennung die Markteinblicke eines Händlers schärfen kann.
preview
Datenwissenschaft und ML (Teil 41): Mustererkennung mit YOLOv8 im Forex und den Aktienmärkten

Datenwissenschaft und ML (Teil 41): Mustererkennung mit YOLOv8 im Forex und den Aktienmärkten

Die Erkennung von Mustern auf den Finanzmärkten ist eine Herausforderung, denn dazu muss man sehen, was auf dem Chart zu sehen ist, und das ist in MQL5 aufgrund der Bildbeschränkungen schwierig zu bewerkstelligen. In diesem Artikel werden wir ein anständiges Modell in Python besprechen, das uns hilft, mit minimalem Aufwand Muster im Chart zu erkennen.
preview
Entwicklung des Price Action Analysis Toolkit (Teil 23): Stärkemessung einer Währung

Entwicklung des Price Action Analysis Toolkit (Teil 23): Stärkemessung einer Währung

Wissen Sie, was die Richtung eines Währungspaares wirklich bestimmt? Es geht um die Stärke der einzelnen Währungen. In diesem Artikel werden wir die Stärke einer Währung messen, indem wir jedes Paar, in dem sie vorkommt, in einer Schleife durchgehen. Aufgrund dieser Erkenntnisse können wir vorhersagen, wie sich diese Paare auf der Grundlage ihrer relativen Stärke entwickeln werden. Lesen Sie weiter, um mehr zu erfahren.
preview
Entwicklung des Price Action Analysis Toolkit (Teil 24): Analyse-Tool zur Quantifizierung von Preisaktionen

Entwicklung des Price Action Analysis Toolkit (Teil 24): Analyse-Tool zur Quantifizierung von Preisaktionen

Kerzenmuster bieten wertvolle Einblicke in potenzielle Marktbewegungen. Einige einzelne Kerzen signalisieren die Fortsetzung des aktuellen Trends, während andere, je nach ihrer Position innerhalb der Kursbewegung, Umkehrungen vorhersagen. In diesem Artikel wird ein EA vorgestellt, der automatisch vier wichtige Kerzen-Formationen identifiziert. In den folgenden Abschnitten erfahren Sie, wie dieses Tool Ihre Preis-Aktions-Analyse verbessern kann.
preview
Entwicklung eines Replay-Systems (Teil 62): Abspielen des Dienstes (III)

Entwicklung eines Replay-Systems (Teil 62): Abspielen des Dienstes (III)

In diesem Artikel befassen wir uns mit dem Problem eines Übermaßes an Ticks, der die Anwendungsleistung bei der Verwendung echter Daten beeinträchtigen kann. Dieses Übermaß beeinträchtigt häufig das korrekte Timing, das erforderlich ist, um einen einminütigen Balken im entsprechenden Fenster zu erstellen.
preview
Analyse der Auswirkungen des Wetters auf die Währungen der Agrarländer mit Python

Analyse der Auswirkungen des Wetters auf die Währungen der Agrarländer mit Python

Welcher Zusammenhang besteht zwischen Wetter und Devisen? In der klassischen Wirtschaftstheorie wurde der Einfluss von Faktoren wie dem Wetter auf das Marktverhalten lange Zeit ignoriert. Aber alles hat sich geändert. Versuchen wir, Zusammenhänge zwischen den Witterungsbedingungen und der Stellung der Agrarwährungen auf dem Markt zu finden.