Erforschung des maschinellen Lernens im unidirektionalen Trendhandel am Beispiel von Gold
In diesem Artikel wird ein Ansatz erörtert, der darauf abzielt, nur in der gewählten Richtung (Kauf oder Verkauf) zu handeln. Zu diesem Zweck werden die Technik der kausalen Inferenz und des maschinellen Lernens eingesetzt.
Integration von Computer Vision in den Handel in MQL5 (Teil 1): Erstellen von Grundfunktionen
Das EURUSD-Prognosesystem mit Hilfe von Computer Vision und Deep Learning. Erfahren Sie, wie Faltungsneuronale Netze komplexe Kursmuster auf dem Devisenmarkt erkennen und Wechselkursbewegungen mit einer Genauigkeit von bis zu 54 % vorhersagen können. Der Artikel beschreibt die Methodik zur Entwicklung eines Algorithmus, der Technologien der künstlichen Intelligenz für die visuelle Analyse von Charts anstelle von traditionellen technischen Indikatoren verwendet. Der Autor demonstriert den Prozess der Umwandlung von Preisdaten in „Bilder“, ihre Verarbeitung durch ein neuronales Netz und die einzigartige Möglichkeit, anhand von Aktivierungskarten und Aufmerksamkeits-Heatmaps einen Blick in das „Bewusstsein“ der KI zu werfen. Praktischer Python-Code, der die MetaTrader 5-Bibliothek nutzt, ermöglicht es den Lesern, das System zu reproduzieren und für den eigenen Handel anzuwenden.
Erstellung einer Strategie der Rückkehr zum Mittelwert auf der Grundlage von maschinellem Lernen
In diesem Artikel wird ein weiterer, origineller Ansatz für die Entwicklung von Handelssystemen auf der Grundlage von maschinellem Lernen vorgeschlagen, bei dem Clustering und Trade Labeling für die Strategien der Rückkehr zum Mittelwert eingesetzt werden.
Swap-Arbitrage am Devisenmarkt: Aufbau eines synthetischen Portfolios und Generierung eines konsistenten Swapflusses
Möchten Sie wissen, wie Sie von den unterschiedlichen Zinssätzen profitieren können? Dieser Artikel befasst sich mit der Frage, wie man Swap-Arbitrage auf dem Forex-Markt nutzen kann, um jede Nacht einen stabilen Gewinn zu erzielen und ein Portfolio aufzubauen, das gegen Marktschwankungen resistent ist.
Marktsimulation (Teil 10): Sockets (IV)
In diesem Artikel werden wir uns ansehen, was Sie tun müssen, um Excel für die Verwaltung von MetaTrader 5 zu nutzen, aber auf eine sehr interessante Art und Weise. Dazu werden wir ein Excel-Add-In verwenden, um die Verwendung von integriertem VBA zu vermeiden. Wenn Sie nicht wissen, was ein Add-in ist, lesen Sie diesen Artikel und lernen Sie, wie man in Python direkt in Excel programmiert.
Arbitrage-Handel im Forex: Ein einfacher synthetischer Market-Maker-Bot für den Einstieg
Heute werfen wir einen Blick auf meinen ersten Arbitrage-Roboter – einen Liquiditätsanbieter (wenn man ihn so nennen kann) für synthetische Vermögenswerte. Derzeit arbeitet dieser Bot erfolgreich als Modul in einem großen maschinellen Lernsystem, aber ich habe einen alten Forex-Arbitrage-Roboter aus der Cloud geholt, also lassen Sie uns einen Blick darauf werfen und darüber nachdenken, was wir heute damit machen können.
Neuroboids Optimierungsalgorithmus (NOA)
Eine neue bioinspirierte Metaheuristik zur Optimierung, NOA (Neuroboids Optimization Algorithm), kombiniert die Prinzipien der kollektiven Intelligenz und der neuronalen Netze. Im Gegensatz zu herkömmlichen Methoden verwendet der Algorithmus eine Population von selbstlernenden „Neuroboiden“, von denen jeder sein eigenes neuronales Netz hat, das seine Suchstrategie in Echtzeit anpasst. Der Artikel zeigt die Architektur des Algorithmus, die Mechanismen des Selbstlernens der Agenten und die Aussichten für die Anwendung dieses hybriden Ansatzes auf komplexe Optimierungsprobleme.
Vom Neuling zum Experten: Zeitlich gefilterter Handel
Nur weil ständig Ticks eingehen, heißt das nicht, dass jeder Moment eine Gelegenheit zum Handeln ist. Heute befassen wir uns eingehend mit der Kunst des Timings und konzentrieren uns auf die Entwicklung eines Algorithmus zur Zeitisolierung, der Händlern dabei hilft, die für sie günstigsten Marktfenster zu identifizieren und zu handeln. Die Pflege dieser Disziplin ermöglicht es Privatanlegern, sich besser auf das Timing der institutionellen Anleger einzustellen, bei denen Präzision und Geduld oft über den Erfolg entscheiden. Nehmen Sie an dieser Diskussion teil, in der wir die Wissenschaft des Timings und des selektiven Handels mit Hilfe der analytischen Fähigkeiten von MQL5 erkunden.
Forex Arbitrage-Handel: Analyse der Bewegungen synthetischer Währungen und ihrer mittleren Umkehrung
In diesem Artikel werden wir die Bewegungen synthetischer Währungen mit Hilfe von Python und MQL5 untersuchen und herausfinden, wie praktikabel Forex-Arbitrage heute ist. Wir werden uns auch mit fertigem Python-Code für die Analyse synthetischer Währungen befassen und mehr Details darüber mitteilen, was synthetische Währungen im Devisenhandel sind.
Entwicklung von Trendhandelsstrategien mit maschinellem Lernen
In dieser Studie wird eine neuartige Methodik für die Entwicklung von Trendfolgestrategien vorgestellt. In diesem Abschnitt wird der Prozess der Annotation von Trainingsdaten und deren Verwendung zum Training von Klassifikatoren beschrieben. Dieser Prozess führt zu voll funktionsfähigen Handelssystemen, die für den MetaTrader 5 entwickelt wurden.
Implementierung eines Tabellenmodells in MQL5: Anwendung des MVC-Konzepts
In diesem Artikel betrachten wir den Prozess der Entwicklung eines Tabellenmodells in MQL5 unter Verwendung des MVC-Architekturmusters (Model-View-Controller) zur Trennung der Logik, Darstellung und Steuerung der Daten, was strukturierten, flexiblen und skalierbaren Code ermöglicht. Wir betrachten die Implementierung von Klassen zum Aufbau eines Tabellenmodells, einschließlich der Verwendung von verknüpften Listen zur Speicherung von Daten.
Aufbau eines Remote-Forex-Risikomanagementsystems in Python
Wir entwickeln einen professionellen Remote-Risikomanager für Forex in Python, der Schritt für Schritt auf dem Server installiert wird. Im Laufe des Artikels werden wir verstehen, wie man die Forex-Risiken programmatisch verwalten kann und wie man eine Forex-Einlage nicht mehr verschwenden kann.
Vom Neuling zum Experten: Forex Markt Perioden
Jede Marktperiode hat einen Anfang und ein Ende und schließt jeweils mit einem Preis, der die Stimmung definiert – ähnlich wie bei Kerzen. Anhand dieser Bezugspunkte können wir die vorherrschende Marktstimmung einschätzen und erkennen, ob Auf- oder Abwärtskräfte die Kontrolle haben. In dieser Diskussion machen wir einen wichtigen Schritt nach vorn, indem wir eine neue Funktion innerhalb des Market Periods Synchronizer entwickeln – eine Funktion, die Forex-Marktsitzungen visualisiert, um fundiertere Handelsentscheidungen zu unterstützen. Dieses Tool kann besonders hilfreich sein, um in Echtzeit festzustellen, welche Seite – Bullen oder Bären – die Sitzung dominiert. Erforschen wir dieses Konzept und entdecken wir die Erkenntnisse, die es bietet.
Der Algorithmus Central Force Optimization (CFO)
Der Artikel stellt den von den Gesetzen der Schwerkraft inspirierten Algorithmus Central Force Optimization (CFO) vor. Es wird untersucht, wie die Prinzipien der physikalischen Schwerkraft Optimierungsprobleme lösen können, bei denen „schwerere“ Lösungen weniger erfolgreiche Gegenstücke anziehen.
Vom Neuling zum Experten: Die Schatten der Kerzen enthüllen (Dochte)
In dieser Diskussion gehen wir einen Schritt weiter, um die zugrundeliegende Preisaktion aufzudecken, die in den Dochten der Kerzen versteckt ist. Durch die Integration einer Docht-Visualisierungsfunktion in den Market Periods Synchronizer verbessern wir das Tool mit größerer analytischer Tiefe und Interaktivität. Dieses aktualisierte System ermöglicht es Händlern, Preisverwerfungen auf höheren Zeitrahmen direkt auf Charts mit niedrigerem Zeitrahmen zu visualisieren und so detaillierte Strukturen zu erkennen, die früher im Schatten verborgen waren.
Indikator für die Stärke eines Währungspaares in reinem MQL5
Wir werden einen professionellen Indikator für die Analyse der Währungsstärke in MQL5 entwickeln. Diese Schritt-für-Schritt-Anleitung zeigt Ihnen, wie Sie ein leistungsstarkes Handels-Tool mit einem visuellen Dashboard für MetaTrader 5 entwickeln können. Sie werden lernen, wie Sie die Stärke von Währungspaaren über mehrere Zeitrahmen (H1, H4, D1) berechnen, dynamische Datenaktualisierungen implementieren und eine nutzerfreundliche Oberfläche erstellen können.
Algorithmus der erfolgreichen Gastronomen (SRA)
Der Successful Restaurateur Algorithm (SRA) ist eine innovative Optimierungsmethode, die sich an den Prinzipien des Restaurantbetriebs orientiert. Im Gegensatz zu traditionellen Ansätzen werden bei der SRA schwache Lösungen nicht verworfen, sondern durch die Kombination mit Elementen erfolgreicher Lösungen verbessert. Der Algorithmus zeigt konkurrenzfähige Ergebnisse und bietet eine neue Perspektive für das Gleichgewicht zwischen Erkunden und Nutzen bei Optimierungsproblemen.
Billard-Optimierungsalgorithmus (BOA)
Die BOA-Methode ist vom klassischen Billardspiel inspiriert und simuliert die Suche nach optimalen Lösungen als ein Spiel, bei dem die Kugeln versuchen, in die Taschen zu fallen, die die besten Ergebnisse darstellen. In diesem Artikel werden wir die Grundlagen von BOA, sein mathematisches Modell und seine Effizienz bei der Lösung verschiedener Optimierungsprobleme betrachten.
Analyse aller Preisbewegungsoptionen auf dem IBM-Quantencomputer
Wir werden einen Quantencomputer von IBM einsetzen, um alle Möglichkeiten der Preisentwicklung zu ermitteln. Klingt nach Science Fiction? Willkommen in der Welt des Quantencomputers für den Handel!
Kapitalmanagement im Handel und das Buchhaltungsprogramm des Händlers zu Hause mit einer Datenbank
Wie kann ein Händler sein Kapital verwalten? Wie kann ein Händler und Anleger den Überblick über Ausgaben, Einnahmen, Vermögenswerte und Verbindlichkeiten behalten? Ich werde Ihnen nicht nur eine Buchhaltungssoftware vorstellen, sondern ein Instrument, das zu Ihrem zuverlässigen Finanznavigator in der stürmischen See des Handels werden kann.
Fibonacci am Devisenmarkt (Teil I): Prüfung des Verhältnisses zwischen Preis und Zeit
Wie beobachtet der Markt Fibonacci-basierte Beziehungen? Diese Folge, bei der jede nachfolgende Zahl gleich der Summe der beiden vorhergehenden ist (1, 1, 2, 3, 5, 8, 13, 21...), beschreibt nicht nur das Wachstum der Kaninchenpopulation. Wir werden die pythagoreische Hypothese betrachten, dass alles in der Welt bestimmten Zahlenbeziehungen unterliegt...
Blood inheritance optimization (BIO)
Ich stelle Ihnen meinen neuen Algorithmus zur Populationsoptimierung vor – Blood Inheritance Optimization (BIO), inspiriert durch das menschliche Blutgruppenvererbungssystem. Bei diesem Algorithmus hat jede Lösung ihre eigene „Blutgruppe“, die bestimmt, wie sie sich weiterentwickelt. Wie in der Natur, wo die Blutgruppe eines Kindes nach bestimmten Regeln vererbt wird, erhalten neue Lösungen in BIO ihre Eigenschaften durch ein System von Vererbung und Mutationen.
Marktsimulation (Teil 09): Sockets (III)
Der heutige Artikel ist eine Fortsetzung des vorangegangenen Artikels. Wir werden uns die Implementierung eines Expert Advisors ansehen und uns dabei vor allem darauf konzentrieren, wie der Servercode ausgeführt wird. Der im vorigen Artikel beschriebene Code reicht nicht aus, damit alles wie erwartet funktioniert. Daher ist es notwendig, beide Artikel zu lesen, um besser zu verstehen, was passieren wird.
Kreis-Such-Algorithmus (CSA)
Der Artikel stellt einen neuen metaheuristischen Optimierungs-Kreis-Such-Algorithmus (CSA) vor, der auf den geometrischen Eigenschaften eines Kreises basiert. Der Algorithmus nutzt das Prinzip der Bewegung von Punkten entlang von Tangenten, um die optimale Lösung zu finden, und kombiniert die Phasen der globalen Erkundung und der lokalen Ausbeutung.
Marktsimulation (Teil 08): Sockets (II)
Wie wäre es, etwas Praktisches mit Sockets zu schaffen? Im heutigen Artikel werden wir mit der Erstellung eines Mini-Chats beginnen. Schauen wir uns gemeinsam an, wie das gemacht wird – es wird sehr interessant sein. Bitte beachten Sie, dass der hier zur Verfügung gestellte Code nur für Lehrzwecke gedacht ist. Es sollte nicht für kommerzielle Zwecke oder in vorgefertigten Anwendungen verwendet werden, da es keine Sicherheit bei der Datenübertragung bietet und die über den Socket übertragenen Inhalte eingesehen werden können.
Chaos Game Optimization (CGO)
Der Artikel stellt einen neuen metaheuristischen Algorithmus, Chaos Game Optimization (CGO), vor, der eine einzigartige Fähigkeit zur Aufrechterhaltung einer hohen Effizienz bei hochdimensionalen Problemen aufweist. Im Gegensatz zu den meisten Optimierungsalgorithmen verliert CGO nicht nur nicht an Leistung, sondern steigert sie manchmal sogar, wenn ein Problem skaliert wird, was sein Hauptmerkmal ist.
Marktsimulation (Teil 07): Sockets (I)
Sockets. Wissen Sie, wofür sie da sind oder wie man sie in MetaTrader 5 verwendet? Wenn die Antwort nein lautet, sollten wir sie zunächst studieren. Im heutigen Artikel werden wir die Grundlagen behandeln. Da es mehrere Möglichkeiten gibt, das Gleiche zu tun, und wir immer am Ergebnis interessiert sind, möchte ich zeigen, dass es tatsächlich eine einfache Möglichkeit gibt, Daten aus MetaTrader 5 in andere Programme, wie z. B. Excel, zu übertragen. Die Hauptidee ist jedoch nicht, Daten von MetaTrader 5 nach Excel zu übertragen, sondern umgekehrt, d.h. Daten von Excel oder einem anderen Programm nach MetaTrader 5 zu übertragen.
Biologisches Neuron zur Vorhersage von Finanzzeitreihen
Wir werden ein biologisch korrektes System von Neuronen für die Vorhersage von Zeitreihen aufbauen. Die Einführung einer plasmaähnlichen Umgebung in die Architektur des neuronalen Netzes schafft eine Art „kollektive Intelligenz“, bei der jedes Neuron den Betrieb des Systems nicht nur durch direkte Verbindungen, sondern auch durch weitreichende elektromagnetische Wechselwirkungen beeinflusst. Mal sehen, wie sich das neuronale Gehirnmodellierungssystem auf dem Markt schlagen wird.
Marktsimulation (Teil 05): Erstellen der Klasse C_Orders (II)
In diesem Artikel erkläre ich, wie Chart Trade zusammen mit dem Expert Advisor eine Anfrage zur Schließung aller offenen Positionen des Nutzers bearbeitet. Das mag einfach klingen, aber es gibt einige Komplikationen, mit denen Sie umgehen müssen.
Royal-Flush-Optimierung (RFO)
Der ursprüngliche Royal Flush Optimierung-Algorithmus bietet einen neuen Ansatz zur Lösung von Optimierungsproblemen, indem er die klassische binäre Kodierung genetischer Algorithmen durch einen sektorbasierten Ansatz ersetzt, der von den Prinzipien des Pokerspiels inspiriert ist. RFO zeigt, wie die Vereinfachung von Grundprinzipien zu einer effizienten und praktischen Optimierungsmethode führen kann. Der Artikel enthält eine detaillierte Analyse des Algorithmus und der Testergebnisse.
Dialektische Suche (DA)
Der Artikel stellt den dialektischen Algorithmus (DA) vor, eine neue globale Optimierungsmethode, die vom philosophischen Konzept der Dialektik inspiriert ist. Der Algorithmus macht sich eine einzigartige Aufteilung der Bevölkerung in spekulative und praktische Denker (thinker) zunutze. Tests zeigen eine beeindruckende Leistung von bis zu 98 % bei niedrigdimensionalen Problemen und eine Gesamteffizienz von 57,95 %. Der Artikel erläutert diese Metriken und präsentiert eine detaillierte Beschreibung des Algorithmus sowie die Ergebnisse von Experimenten mit verschiedenen Arten von Funktionen.
Marktsimulation (Teil 06): Übertragen von Informationen von MetaTrader 5 nach Excel
Viele Menschen, insbesondere Nicht-Programmierer, finden es sehr schwierig, Informationen zwischen MetaTrader 5 und anderen Programmen zu übertragen. Ein solches Programm ist Excel. Viele verwenden Excel, um ihre Risikokontrolle zu verwalten und aufrechtzuerhalten. Es ist ein ausgezeichnetes Programm und leicht zu erlernen, auch für diejenigen, die keine VBA-Programmierer sind. Im Folgenden werden wir uns ansehen, wie man eine Verbindung zwischen MetaTrader 5 und Excel herstellt (eine sehr einfache Methode).
Marktsimulation (Teil 04): Erstellen der Klasse C_Orders (I)
In diesem Artikel beginnen wir mit der Erstellung der Klasse C_Orders, um Aufträge an den Handelsserver senden zu können. Wir werden dies nach und nach tun, denn unser Ziel ist es, im Detail zu erklären, wie dies über das Nachrichtensystem geschehen wird.
Erstellung eines Indikators für die Volatilitätsprognose mit Python
In diesem Artikel prognostizieren wir die zukünftige extreme Volatilität anhand einer binären Klassifizierung. Außerdem werden wir mit Hilfe von maschinellem Lernen einen Indikator für extreme Volatilität entwickeln.
MetaTrader 5 Machine Learning Blueprint (Teil 3): Methoden der Kennzeichnung von Trend-Scanning
Wir haben eine Pipline für eine robuste Eigenschaftsentwicklung entwickelt, die geeignete tick-basierte Balken verwendet, um Datenverluste zu vermeiden, und das kritische Problem der Kennzeichnung der meta-gekennzeichneten Signale des Triple-Barrier gelöst. Dieser Teil behandelt die fortgeschrittene Technik der Kennzeichnung, dem Trend-Scanning, für adaptive Horizonte. Nach der Erläuterung der Theorie wird anhand eines Beispiels gezeigt, wie Kennzeichnungen des Trend-Scanning mit Meta-Kennzeichen verwendet werden können, um die klassische Kreuzungsstrategie mit gleitendem Durchschnitt zu verbessern.
Vom Neuling zum Experten: Hilfsprogramm zur Parametersteuerung
Stellen Sie sich vor, Sie verwandeln die traditionellen EA- oder Indikator-Eingabeeigenschaften in eine Echtzeit-Kontrollschnittstelle auf dem Chart. Diese Diskussion baut auf unserer grundlegenden Arbeit am Market Period Synchronizer-Indikator auf und stellt eine bedeutende Entwicklung in der Art und Weise dar, wie wir Higher-Timeframe (HTF)-Marktstrukturen visualisieren und verwalten. Hier setzen wir dieses Konzept in ein vollständig interaktives Hilfsprogramm um – ein Dashboard, das eine dynamische Steuerung und eine verbesserte Visualisierung von mehrperiodigen Preisaktionen direkt auf dem Chart ermöglicht. Erkunden Sie mit uns, wie diese Innovation die Art und Weise, wie Händler mit ihren Tools interagieren, neu gestaltet.
Die Grenzen des maschinellen Lernens überwinden (Teil 6): Effektive Speichervalidierung
In dieser Diskussion stellen wir den klassischen Ansatz der Zeitreihen-Kreuzvalidierung modernen Alternativen gegenüber, die seine Grundannahmen in Frage stellen. Wir zeigen die wichtigsten blinden Flecken der traditionellen Methode auf – insbesondere ihr Versagen, die sich verändernden Marktbedingungen zu berücksichtigen. Um diese Lücken zu schließen, führen wir die Effective Memory Cross-Validation (EMCV) ein, einen domänenspezifischen Ansatz, der die lange gehegte Annahme in Frage stellt, dass mehr historische Daten immer die Leistung verbessern.
Vom Neuling zum Experten: Synchronisieren der Zeitrahmen des Marktes
In dieser Diskussion stellen wir ein Synchronisierungsinstrument der Zeitrahmen von länger zu kürzer vor, das das Problem der Analyse von Marktmustern lösen soll, die sich über höhere Zeitrahmen bilden. Die eingebauten Periodenmarker in MetaTrader 5 sind oft begrenzt, starr und lassen sich nicht ohne weiteres an nicht standardisierte Zeitrahmen anpassen. Unsere Lösung nutzt die MQL5-Sprache, um einen Indikator zu entwickeln, der eine dynamische und visuelle Möglichkeit bietet, Strukturen mit höherem Zeitrahmen in Charts mit niedrigerem Zeitrahmen auszurichten. Dieses Instrument kann für eine detaillierte Marktanalyse sehr wertvoll sein. Um mehr über die Funktionen und die Umsetzung zu erfahren, lade ich Sie ein, sich an der Diskussion zu beteiligen.
Statistische Arbitrage durch kointegrierte Aktien (Teil 6): Bewertungssystem
In diesem Artikel schlagen wir ein Bewertungssystem für die Strategien der Rückkehr zum Mittelwert vor, das auf der statistischen Arbitrage von kointegrierten Aktien basiert. In dem Artikel werden Kriterien vorgeschlagen, die von der Liquidität und den Transaktionskosten bis zur Anzahl der Kointegrationsränge und der Zeit bis zur Umkehrung des Mittelwerts reichen, wobei die strategischen Kriterien der Datenhäufigkeit (Zeitrahmen) und des Rückblickzeitraums für die Kointegrationstests berücksichtigt werden, die vor der Bewertung der Rangfolge richtig bewertet werden. Die für die Reproduktion des Backtests erforderlichen Dateien werden zur Verfügung gestellt, und ihre Ergebnisse werden ebenfalls kommentiert.
Statistische Arbitrage durch kointegrierte Aktien (Teil 5): Screening
In diesem Artikel wird ein Verfahren zum Screening von Vermögenswerten für eine statistische Arbitragestrategie durch kointegrierte Aktien vorgeschlagen. Das System beginnt mit der regulären Filterung nach wirtschaftlichen Faktoren, wie z. B. Vermögensbereich und Branche, und endet mit einer Liste von Kriterien für ein Scoring-System. Für jeden statistischen Test, der beim Screening verwendet wurde, wurde eine entsprechende Python-Klasse entwickelt: Pearson-Korrelation, Engle-Granger-Kointegration, Johansen-Kointegration und ADF/KPSS-Stationarität. Diese Python-Klassen werden zusammen mit einer persönlichen Anmerkung des Autors über den Einsatz von KI-Assistenten für die Softwareentwicklung bereitgestellt.