
Neuronale Netze leicht gemacht (Teil 22): Unüberwachtes Lernen von rekurrenten Modellen
Wir untersuchen weiterhin Modelle und Algorithmen für unüberwachtes Lernen. Diesmal schlage ich vor, dass wir die Eigenschaften von AutoAutoencodern bei der Anwendung auf das Training rekurrenter Modelle diskutieren.

Datenwissenschaft und maschinelles Lernen (Teil 18): Der Kampf um die Beherrschung der Marktkomplexität, verkürzte SVD versus NMF
Die verkürzte Singulärwertzerlegung (Truncated Singular Value Decomposition, SVD) und die nicht-negative Matrixzerlegung (Non-Negative Matrix Factorization, NMF) sind Verfahren zur Dimensionsreduktion. Beide spielen eine wichtige Rolle bei der Entwicklung von datengesteuerten Handelsstrategien. Entdecken Sie die Kunst der Dimensionalitätsreduzierung, der Entschlüsselung von Erkenntnissen und der Optimierung quantitativer Analysen für einen fundierten Ansatz zur Navigation durch die Feinheiten der Finanzmärkte.

Entwicklung eines Replay Systems — Marktsimulation (Teil 15): Die Geburt des SIMULATORS (V) - RANDOM WALK
In diesem Artikel werden wir die Entwicklung eines Simulators für unser System abschließen. Das Hauptziel besteht darin, den im vorherigen Artikel beschriebenen Algorithmus zu konfigurieren. Dieser Algorithmus zielt darauf ab, eine zufällige Bewegung, einen „RANDOM WALK“ zu erzeugen. Um das heutige Material zu verstehen, ist es daher notwendig, den Inhalt der früheren Artikel zu kennen. Wenn Sie die Entwicklung des Simulators nicht verfolgt haben, empfehle ich Ihnen, diese Sequenz von Anfang an zu lesen. Andernfalls könnten Sie verwirrt sein über das, was hier erklärt wird.

Rebuy-Algorithmus: Handelssimulation mit mehreren Währungen
In diesem Artikel werden wir ein mathematisches Modell zur Simulation der Preisbildung in mehreren Währungen erstellen und die Untersuchung des Diversifizierungsprinzips als Teil der Suche nach Mechanismen zur Steigerung der Handelseffizienz abschließen, die ich im vorherigen Artikel mit theoretischen Berechnungen begonnen habe.

Entwicklung eines Replay-Systems — Marktsimulation (Teil 09): Nutzerdefinierte Ereignisse
Hier sehen wir, wie nutzerdefinierte Ereignisse ausgelöst werden und wie der Indikator den Status des Wiedergabe-/Simulationsdienstes meldet.

Frequenzbereichsdarstellungen von Zeitreihen: Das Leistungsspektrum
In diesem Artikel erörtern wir Methoden zur Analyse von Zeitreihen im Frequenzbereich. Hervorhebung des Nutzens der Untersuchung der Leistungsspektren von Zeitreihen bei der Erstellung von Vorhersagemodellen. In diesem Artikel werden wir einige der nützlichen Perspektiven erörtern, die sich aus der Analyse von Zeitreihen im Frequenzbereich unter Verwendung der diskreten Fourier-Transformation (dft) ergeben.

Entwicklung eines Qualitätsfaktors für Expert Advisors
In diesem Artikel sehen wir uns an, wie Sie eine Qualitätsbewertung entwickeln, die Ihr Expert Advisor im Strategietester anzeigen kann. Wir werden uns zwei bekannte Berechnungsmethoden ansehen – Van Tharp und Sunny Harris.

Algorithmen zur Optimierung mit Populationen Firefly-Algorithmus (FA)
In diesem Artikel werde ich die Optimierungsmethode des Firefly-Algorithmus (FA) betrachten. Dank der Änderung hat sich der Algorithmus von einem Außenseiter zu einem echten Tabellenführer entwickelt.

Neuronale Netze leicht gemacht (Teil 41): Hierarchische Modelle
Der Artikel beschreibt hierarchische Trainingsmodelle, die einen effektiven Ansatz für die Lösung komplexer maschineller Lernprobleme bieten. Hierarchische Modelle bestehen aus mehreren Ebenen, von denen jede für verschiedene Aspekte der Aufgabe zuständig ist.

Entwicklung eines Roboters in Python und MQL5 (Teil 2): Auswahl, Erstellung und Training von Modellen, Python Custom Tester
Wir setzen die Serie von Artikeln über die Entwicklung eines Handelsroboters in Python und MQL5 fort. Heute werden wir das Problem der Auswahl und des Trainings eines Modells, das Testen desselben, die Implementierung der Kreuzvalidierung, die Rastersuche sowie das Problem des Modell-Ensembles lösen.

Vom Neuling zum Experten: Umfassende Fehlersuche in MQL5
Die Problemlösung kann eine prägnante Routine für die Beherrschung komplexer Fertigkeiten, wie die Programmierung in MQL5, schaffen. Dieser Ansatz ermöglicht es Ihnen, sich auf die Lösung von Problemen zu konzentrieren und gleichzeitig Ihre Fähigkeiten zu entwickeln. Je mehr Probleme Sie lösen, desto mehr fortgeschrittenes Fachwissen erwerben Sie. Ich persönlich glaube, dass die Fehlersuche der effektivste Weg ist, das Programmieren zu beherrschen. Heute werden wir den Prozess der Codebereinigung durchgehen und die besten Techniken besprechen, um ein unordentliches Programm in ein sauberes, funktionales Programm zu verwandeln. Lesen Sie diesen Artikel und gewinnen Sie wertvolle Erkenntnisse.

Algorithmen zur Optimierung mit Populationen: der Gravitationssuchalgorithmus (GSA)
GSA ist ein von der unbelebten Natur inspirierter Populationsoptimierungsalgorithmus. Dank des in den Algorithmus implementierten Newton'schen Gravitationsgesetzes können wir dank der hohen Zuverlässigkeit der Modellierung der Interaktion physikalischer Körper den bezaubernden Tanz von Planetensystemen und Galaxienhaufen beobachten. In diesem Artikel möchte ich einen der interessantesten und originellsten Optimierungsalgorithmen vorstellen. Der Simulator für die Bewegung von Raumobjekten ist ebenfalls vorhanden.

Entwicklung eines Replay-Systems — Marktsimulation (Teil 02): Erste Versuche (II)
Diesmal wollen wir einen anderen Ansatz wählen, um das 1-Minuten-Ziel zu erreichen. Diese Aufgabe ist jedoch nicht so einfach, wie man vielleicht denkt.

Algorithmen zur Optimierung mit Populationen: Spiralförmige Dynamische Optimization (SDO) Algorithmus
In diesem Artikel wird ein Optimierungsalgorithmus vorgestellt, der auf den Mustern der Konstruktion spiralförmiger Trajektorien in der Natur, wie z. B. bei Muschelschalen, basiert - der Algorithmus der spiralförmigen dynamischen Optimierung (SDO). Ich habe den von den Autoren vorgeschlagenen Algorithmus gründlich überarbeitet und verändert. Der Artikel befasst sich mit der Notwendigkeit dieser Änderungen.

Modified Grid-Hedge EA in MQL5 (Part III): Optimizing Simple Hedge Strategy (I)
In this third part, we revisit the Simple Hedge and Simple Grid Expert Advisors (EAs) developed earlier. Our focus shifts to refining the Simple Hedge EA through mathematical analysis and a brute force approach, aiming for optimal strategy usage. This article delves deep into the mathematical optimization of the strategy, setting the stage for future exploration of coding-based optimization in later installments.

Datenwissenschaft und maschinelles Lernen (Teil 19): Überladen Sie Ihre AI-Modelle mit AdaBoost
AdaBoost, ein leistungsstarker Boosting-Algorithmus, der die Leistung Ihrer KI-Modelle steigert. AdaBoost, die Abkürzung für Adaptive Boosting, ist ein ausgeklügeltes Ensemble-Lernverfahren, das schwache Lerner nahtlos integriert und ihre kollektive Vorhersagestärke erhöht.

Entwicklung eines Replay-Systems — Marktsimulation (Teil 12): Die Geburt des SIMULATORS (II)
Die Entwicklung eines Simulators kann viel interessanter sein, als es scheint. Heute gehen wir ein paar Schritte weiter in diese Richtung, denn die Dinge werden immer interessanter.

Datenwissenschaft und ML (Teil 29): Wichtige Tipps für die Auswahl der besten Forex-Daten für AI-Trainingszwecke
In diesem Artikel befassen wir uns eingehend mit den entscheidenden Aspekten der Auswahl der relevantesten und hochwertigsten Forex-Daten, um die Leistung von KI-Modellen zu verbessern.

Implementierung des Janus-Faktors in MQL5
Gary Anderson entwickelte eine Marktanalysemethode, die auf einer Theorie beruht, die er Janus-Faktor nannte. Die Theorie beschreibt eine Reihe von Indikatoren, mit denen sich Trends aufzeigen und Marktrisiken bewerten lassen. In diesem Artikel werden wir diese Werkzeuge in mql5 implementieren.

Entwicklung eines Replay System (Teil 32): Auftragssystem (I)
Von allen Dingen, die wir bisher entwickelt haben, ist dieses System, wie Sie wahrscheinlich bemerken und letztendlich zustimmen werden, das komplexeste. Nun müssen wir etwas sehr Einfaches tun: unser System soll den Betrieb eines Handelsservers simulieren. Die Notwendigkeit, die Funktionsweise des Handelsservers genau zu implementieren, scheint eine Selbstverständlichkeit zu sein. Zumindest in Worten. Aber wir müssen dies so tun, dass alles nahtlos und transparent für den Nutzer des Wiedergabe-/Simulationssystems ist.

Entwicklung eines Replay Systems — Marktsimulation (Teil 14): Die Geburt des SIMULATORS (IV)
In diesem Artikel werden wir die Entwicklungsphase des Simulators fortsetzen. Diesmal werden wir sehen, wie wir eine Bewegung vom Typ RANDOM WALK effektiv erstellen können. Diese Art von Bewegung ist sehr interessant, denn sie bildet die Grundlage für alles, was auf dem Kapitalmarkt geschieht. Darüber hinaus werden wir beginnen, einige Konzepte zu verstehen, die für die Durchführung von Marktanalysen grundlegend sind.

Künstlicher Bienenstock-Algorithmus (ABHA): Theorie und Methoden
In diesem Artikel geht es um den 2009 entwickelten Artificial Bee Hive Algorithm (ABHA). Der Algorithmus ist auf die Lösung kontinuierlicher Optimierungsprobleme ausgerichtet. Wir werden uns ansehen, wie ABHA sich vom Verhalten eines Bienenvolkes inspirieren lässt, in dem jede Biene eine einzigartige Aufgabe hat, die ihr hilft, Ressourcen effizienter zu finden.

Neuronale Netze leicht gemacht (Teil 34): Vollständig parametrisierte Quantilfunktion
Wir untersuchen weiterhin verteilte Q-Learning-Algorithmen. In früheren Artikeln haben wir verteilte und Quantil-Q-Learning-Algorithmen besprochen. Im ersten Algorithmus haben wir die Wahrscheinlichkeiten für bestimmte Wertebereiche trainiert. Im zweiten Algorithmus haben wir Bereiche mit einer bestimmten Wahrscheinlichkeit trainiert. In beiden Fällen haben wir a priori Wissen über eine Verteilung verwendet und eine andere trainiert. In diesem Artikel wenden wir uns einem Algorithmus zu, der es dem Modell ermöglicht, für beide Verteilungen trainiert zu werden.

Kombinatorisch symmetrische Kreuzvalidierung in MQL5
In diesem Artikel stellen wir die Implementierung der kombinatorisch symmetrischen Kreuzvalidierung in reinem MQL5 vor, um den Grad der Überanpassung nach der Optimierung einer Strategie unter Verwendung des langsamen vollständigen Algorithmus des Strategietesters zu messen.

Algorithmen zur Optimierung mit Populationen: Der Algorithmus Simulated Isotropic Annealing (SIA). Teil II
Der erste Teil war dem bekannten und beliebten Algorithmus des Simulated Annealing gewidmet. Wir haben ihre Vor- und Nachteile gründlich abgewogen. Der zweite Teil des Artikels ist der radikalen Umgestaltung des Algorithmus gewidmet, die ihn zu einem neuen Optimierungsalgorithmus macht, dem Simulated Isotropic Annealing (SIA).

Messen der Information von Indikatoren
Maschinelles Lernen hat sich zu einer beliebten Methode für die Strategieentwicklung entwickelt. Während die Maximierung der Rentabilität und der Vorhersagegenauigkeit stärker in den Vordergrund gerückt wurde, wurde der Bedeutung der Verarbeitung der Daten, die zur Erstellung von Vorhersagemodellen verwendet werden, nicht viel Aufmerksamkeit geschenkt. In diesem Artikel befassen wir uns mit der Verwendung des Konzepts der Entropie zur Bewertung der Eignung von Indikatoren für die Erstellung von Prognosemodellen, wie sie in dem Buch Testing and Tuning Market Trading Systems von Timothy Masters dokumentiert sind.

Datenwissenschaft und maschinelles Lernen — Neuronales Netzwerk (Teil 02): Entwurf von Feed Forward NN-Architekturen
Bevor wir fertig sind, müssen wir noch einige kleinere Dinge im Zusammenhang mit dem neuronalen Feed-Forward-Netz behandeln, unter anderem den Entwurf. Sehen wir uns an, wie wir ein flexibles neuronales Netz für unsere Eingaben, die Anzahl der verborgenen Schichten und die Knoten für jedes Netz aufbauen und gestalten können.

Implementierung eines ARIMA-Trainingsalgorithmus in MQL5
In diesem Artikel wird ein Algorithmus implementiert, der das autoregressive integrierte gleitende Durchschnittsmodell von Box und Jenkins unter Verwendung der Powells-Methode der Funktionsminimierung anwendet. Box und Jenkins stellten fest, dass die meisten Zeitreihen mit einem oder beiden Rahmen modelliert werden können.

Datenwissenschaft und maschinelles Lernen (Teil 15): SVM, ein Muss im Werkzeugkasten jedes Händlers
Entdecken Sie die unverzichtbare Rolle von Support Vector Machines (SVM) bei der Gestaltung der Zukunft des Handels. Dieser umfassende Leitfaden zeigt auf, wie SVM Ihre Handelsstrategien verbessern, die Entscheidungsfindung optimieren und neue Chancen auf den Finanzmärkten erschließen kann. Tauchen Sie ein in die Welt der SVM mit realen Anwendungen, Schritt-für-Schritt-Tutorials und Expertenwissen. Rüsten Sie sich mit dem unverzichtbaren Werkzeug aus, das Ihnen helfen kann, die Komplexität des modernen Handels zu bewältigen. Verbessern Sie das Spiel Ihres Handels mit SVM - ein Muss für den Werkzeugkasten eines jeden Händlers.

Algorithmen zur Optimierung mit Populationen: Der Algorithmus Charged System Search (CSS)
In diesem Artikel werden wir einen weiteren Optimierungsalgorithmus betrachten, der von der unbelebten Natur inspiriert ist - den CSS-Algorithmus (Charged System Search, Suche geladener Systeme). In diesem Artikel wird ein neuer Optimierungsalgorithmus vorgestellt, der auf den Prinzipien der Physik und Mechanik beruht.

Modifizierter Grid-Hedge EA in MQL5 (Teil IV): Optimierung der einfachen Grid-Strategie (I)
In diesem vierten Teil greifen wir die zuvor entwickelten Simple Hedge und Simple Grid Expert Advisors (EAs) wieder auf. Wir konzentrieren uns darauf, den Simple Grid EA durch mathematische Analysen und einen Brute-Force-Ansatz zu verfeinern, mit dem Ziel, eine optimale Strategie anzuwenden. Dieser Artikel befasst sich eingehend mit der mathematischen Optimierung der Strategie und legt den Grundstein für die künftige Erforschung der kodierungsbasierten Optimierung in späteren Ausgaben.

Algorithmen zur Optimierung mit Populationen: Binärer genetischer Algorithmus (BGA). Teil II
In diesem Artikel befassen wir uns mit dem binären genetischen Algorithmus (BGA), der die natürlichen Prozesse modelliert, die im genetischen Material von Lebewesen in der Natur ablaufen.

Neuronale Netze leicht gemacht (Teil 18): Assoziationsregeln
Als Fortsetzung dieser Artikelserie betrachten wir eine andere Art von Problemen innerhalb der Methoden des unüberwachten Lernens: die Ermittlung von Assoziationsregeln. Dieser Problemtyp wurde zuerst im Einzelhandel, insbesondere in Supermärkten, zur Analyse von Warenkörben eingesetzt. In diesem Artikel werden wir über die Anwendbarkeit solcher Algorithmen im Handel sprechen.

Entwicklung eines Replay Systems — Marktsimulation (Teil 19): Erforderliche Anpassungen
Hier werden wir den Boden bereiten, damit wir, wenn wir neue Funktionen zum Code hinzufügen müssen, dies reibungslos und einfach tun können. Der derzeitige Kodex kann einige der Dinge, die notwendig sind, um sinnvolle Fortschritte zu erzielen, noch nicht abdecken oder behandeln. Wir müssen alles strukturieren, damit wir bestimmte Dinge mit minimalem Aufwand umsetzen können. Wenn wir alles richtig machen, erhalten wir ein wirklich universelles System, das sich sehr leicht an jede Situation anpassen lässt, die es zu bewältigen gilt.

Datenkennzeichnung für die Zeitreihenanalyse (Teil 3):Beispiel für die Verwendung von Datenkennzeichnungen
In dieser Artikelserie werden verschiedene Methoden zur Kennzeichnung (labeling) von Zeitreihen vorgestellt, mit denen Daten erstellt werden können, die den meisten Modellen der künstlichen Intelligenz entsprechen. Eine gezielte und bedarfsgerechte Kennzeichnung von Daten kann dazu führen, dass das trainierte Modell der künstlichen Intelligenz besser mit dem erwarteten Design übereinstimmt, die Genauigkeit unseres Modells verbessert wird und das Modell sogar einen qualitativen Sprung machen kann!

Neuronale Netze leicht gemacht (Teil 40): Verwendung von Go-Explore bei großen Datenmengen
In diesem Artikel wird die Verwendung des Go-Explore-Algorithmus über einen langen Trainingszeitraum erörtert, da die Strategie der zufälligen Aktionsauswahl mit zunehmender Trainingszeit möglicherweise nicht zu einem profitablen Durchgang führt.

Die Kategorientheorie in MQL5 (Teil 1)
Die Kategorientheorie ist ein vielfältiger und expandierender Zweig der Mathematik, der in der MQL-Gemeinschaft noch relativ unentdeckt ist. In dieser Artikelserie sollen einige der Konzepte vorgestellt und untersucht werden, mit dem übergeordneten Ziel, eine offene Bibliothek einzurichten, die zu Kommentaren und Diskussionen anregt und hoffentlich die Nutzung dieses bemerkenswerten Bereichs für die Strategieentwicklung der Händler fördert.

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 24): Gleitende Durchschnitte
Gleitende Durchschnitte sind ein sehr verbreiteter Indikator, der von den meisten Händlern verwendet und verstanden wird. Wir erforschen mögliche Anwendungsfälle, die in den mit dem MQL5-Assistenten zusammengestellten Expert Advisors vielleicht nicht so häufig vorkommen.

Algorithmen zur Optimierung mit Populationen Optimierung gemäß einer bakteriellen Nahrungssuche (BFO)
Die Strategie der Nahrungssuche des Bakteriums E. coli inspirierte die Wissenschaftler zur Entwicklung des BFO-Optimierungsalgorithmus. Der Algorithmus enthält originelle Ideen und vielversprechende Optimierungsansätze und ist es wert, weiter untersucht zu werden.


Entwicklung eines Wiedergabesystems — Marktsimulation (Teil 10): Nur echte Daten für das Replay verwenden
Hier werden wir uns ansehen, wie wir zuverlässigere Daten (gehandelte Ticks) im Wiedergabesystem verwenden können, ohne uns Gedanken darüber zu machen, ob sie angepasst sind oder nicht.