
时间序列的频域表示:功率谱
在本文中,我们将讨论在频域中分析时间序列的相关方法。 构建预测模型时,强调检验时间序列功率谱的效用 在本文中,我们将讨论运用离散傅里叶变换(dft)在频域中分析时间序列获得的一些实用观点。

DoEasy 函数库中的时间序列(第五十二部分):多周期、多品种单缓冲区标准指标的跨平台性质
在本文中,研究创建多品种、多周期标准指标的“建仓/派发”。 略微改进指标依托的函数库类,以便从老旧的 MetaTrader 4 平台切换到 MetaTrader 5 时,基于该函数库开发的程序均可正常运行。

神经网络变得轻松(第十五部分):利用 MQL5 进行数据聚类
我们继续研究聚类方法。 在本文中,我们将创建一个新的 CKmeans 类来实现最常见的聚类方法之一:k-均值。 在测试期间,该模型成功地识别了大约 500 种形态。

用于在EA交易中包含指标的现成模板(第一部分):振荡指标
本文从振荡指标类开始研究标准指标,我们将创建现成的模板,用于EA中——声明和设置参数、指标初始化和去初始化,以及从EA中的指标缓冲区接收数据和信号。

神经网络变得轻松(第十八部分):关联规则
作为本系列文章的延续,我们来研究无监督学习方法中的另一类问题:挖掘关联规则。 这种问题类型首先用于零售业,即超市等,来分析市场篮子。 在本文中,我们将讨论这些算法在交易中的适用性。

MQL5 中的范畴论 (第 7 部分):多域、相对域和索引域
范畴论是数学的一个多样化和不断扩展的分支,直到最近才在 MQL5 社区中得到一些报道。 这些系列文章旨在探索和验证一些概念和公理,其总体目标是建立一个开放的函数库,提供洞察力,同时也希望进一步在交易者的策略开发中运用这个非凡的领域。

神经网络变得轻松(第二十四部分):改进迁移学习工具
在上一篇文章中,我们创建了一款用于创建和编辑神经网络架构的工具。 今天我们将继续打造这款工具。 我们将努力令其对用户更加友好。 也许可以看到,我们的主题往上更进一步。 但是,您不认为规划良好的工作空间在实现结果方面起着重要作用吗?

Heiken-Ashi指标与移动平均指标组合能够提供好的信号吗?
策略的组合可能会提供更好的机会,我们可以把指标和形态一起使用,或者更进一步,多个指标和形态一起,这样我们可以获得额外的确认因子。移动平均帮我们确认和驾驭趋势,它们是最为人所知的技术指标,这是因为它们的简单性和为分析增加价值的良好记录。

MQL5 中的矩阵和向量:激活函数
在此,我们将只讲述机器学习的一个方面 — 激活函数。 在人工神经网络中,神经元激活函数会根据一个或一组输入信号的数值,计算输出信号值。 我们将深入研究该过程的内部运作。

利用 MQL5 实现 Janus 因子
加里·安德森(Gary Anderson)基于他称之为Janus因子的理论,开发了一套市场分析方法。 该理论描述了一套可揭示趋势和评估市场风险的指标。 在本文中,我们将利用 mql5 实现这些工具。


DoEasy 函数库中的图形(第八十九部分):标准图形对象编程。 基本功能
目前,该函数库能够跟踪客户端终端图表上的标准图形对象,包括删除和修改其某些参数。 在当下,它还缺乏从自定义程序创建标准图形对象的能力。

改编版 MQL5 网格对冲 EA(第 1 部分):制作一个简单的对冲 EA
我们将创建一个简单的对冲 EA,作为我们更高级的 Grid-Hedge EA 的基础,它将是经典网格和经典对冲策略的混合体。在本文结束时,您将知晓如何创建一个简单的对冲策略,并且您还将知晓人们对于该策略是否能真正 100% 盈利的说法。

在 ONNX 模型中使用 float16 和 float8 格式
用于表示机器学习模型的数据格式对其有效性起着至关重要的作用。近年来,出现了几种新类型的数据,专门为使用深度学习模型而设计。在本文中,我们将重点介绍两种新的数据格式,它们已在现代模型中广泛采用。

使用Python和MQL5开发机器人(第一部分):数据预处理
基于机器学习的交易机器人开发:详细指南本系列文章的第一篇将重点讨论数据的收集与准备以及特征的选择。该项目采用Python编程语言及其相关库,并结合MetaTrader 5平台来实现。

数据科学与机器学习(第 03 部分):矩阵回归
这一次,我们的模型是由矩阵构建的,它更具灵活性,同时它允许我们构建更强大的模型,不仅可以处理五个独立变量,但凡我们保持在计算机的计算极限之内,它还可以处理更多变量,这篇文章肯定会是一篇阅读起来很有趣的文章。

DoEasy. 控件 (第 26 部分): 完成 ToolTip(工具提示)WinForms 对象,并转移至 ProgressBar(进度条)开发
在本文中,我将完成 ToolTip(工具提示)控件的开发,并启动 ProgressBar(进度条) WinForms 对象开发。 在处理对象时,我将针对控件及其组件开发动画处理的通用功能。

数据科学和机器学习(第 18 部分):掌握市场复杂性博弈,截断型 SVD 对比 NMF
截断型奇异值分解(SVD)和非负矩阵分解(NMF)都是降维技术。它们在制定数据驱动的交易策略方面都发挥着重要作用。探索降维的艺术,揭示洞察和优化定量分析,以明智的方式航行在错综复杂的金融市场。

基于画布的指标:为通道填充透明度
在本文中,我将介绍一种创建自定义指标的方法,该方法利用标准库中的类 CCanvas 来完成绘图,并可查看图表属性以便坐标转换。 我将着手处理特殊的指标,其需要用透明度填充两条线之间的区域。

神经网络变得轻松(第四十六部分):条件导向目标强化学习(GCRL)
在本文中,我们要看看另一种强化学习方式。 它被称为条件导向目标强化学习(GCRL)。 按这种方式,代理者经过训练,可以在特定场景中达成不同的目标。

多层感知器和反向传播算法(第 3 部分):与策略测试器集成 - 概述(I)
多层感知器是简单感知器的演变,可以解决非线性可分离问题。 结合反向传播算法,可以有效地训练该神经网络。 在多层感知器和反向传播系列的第 3 部分当中,我们将见识到如何将此技术集成到策略测试器之中。 这种集成将允许使用复杂的数据分析,旨在制定更好的决策,从而优化您的交易策略。 在本文中,我们将讨论这种技术的优点和问题。

数据科学与机器学习(第 09 部分):K-最近邻算法(KNN)
这是一种惰性算法,它不是基于训练数据集学习,而是以存储数据集替代,并在给定新样本时立即采取行动。 尽管它很简单,但它能用于各种实际应用。

将您自己的LLM集成到EA中(第1部分):硬件和环境部署
随着人工智能的快速发展,大型语言模型(LLM)成为人工智能的重要组成部分,因此我们应该思考如何将强大的语言模型集成到我们的算法交易中。对大多数人来说,很难根据他们的需求对这些强大的模型进行微调,在本地部署,然后将其应用于算法交易。本系列文章将采取循序渐进的方法来实现这一目标。

神经网络变得轻松(第二十九部分):优势扮演者-评价者算法
在本系列的前几篇文章中,我们见识到两种增强的学习算法。 它们中的每一个都有自己的优点和缺点。 正如在这种情况下经常发生的那样,接下来的思路是将这两种方法合并到一个算法,使用两者间的最佳者。 这将弥补它们每种的短处。 本文将讨论其中一种方法。

构建和测试肯特纳通道交易系统
在本文中,我们将尝试使用金融市场中一个非常重要的概念 - 波动性 - 来构建交易系统。我们将在了解肯特纳通道(Keltner Channel)指标后提供一个基于该指标的交易系统,并介绍如何对其进行编码,以及如何根据简单的交易策略创建一个交易系统,然后在不同的资产上进行测试。

从头开始开发智能交易系统(第 29 部分):谈话平台
在本文中,我们将学习如何让 MetaTrader 5 平台谈话。 我们如何才能让 EA 更有趣呢? 金融市场交易往往过于无聊和单调,但我们能够令这项工作少些无趣。 请注意,对于那些经历过上瘾等问题的人来说,这个项目可能是危险的。 然而,在一般情况下,它只会让事情聊胜于无。

时间序列挖掘的数据标签(第1部分):通过EA操作图制作具有趋势标记的数据集
本系列文章介绍了几种时间序列标记方法,这些方法可以创建符合大多数人工智能模型的数据,而根据需要进行有针对性的数据标记可以使训练后的人工智能模型更符合预期设计,提高我们模型的准确性,甚至帮助模型实现质的飞跃!

DoEasy 函数库中的时间序列(第五十七部分):指标缓冲区数据对象
在本文中,开发一个对象,其中包含一个指标的一个缓冲区的所有数据。 这些对象对于存储指标缓冲区的数据序列将是必需的。 在其的辅助下,才有可能对任何指标的缓冲区数据,以及其他类似数据进行排序和比较。

群体优化算法:粒子群(PSO)
在本文中,我将研究流行的粒子群优化(PSO)算法。 之前,我们曾讨论过优化算法的重要特征,如收敛性、收敛率、稳定性、可伸缩性,并开发了一个测试台,并研究了最简单的 RNG 算法。

DoEasy. 控件(第 4 部分):面板控件,Padding(填充)和 Dock(驻靠)参数
在本文中,我将实现处理 Padding(填充,元素所有侧边的内部缩进/边距)和 Dock(驻靠)参数(对象在其容器中的定位方式)。