
DoEasy 函数库中的时间序列(第五十七部分):指标缓冲区数据对象
在本文中,开发一个对象,其中包含一个指标的一个缓冲区的所有数据。 这些对象对于存储指标缓冲区的数据序列将是必需的。 在其的辅助下,才有可能对任何指标的缓冲区数据,以及其他类似数据进行排序和比较。

群体优化算法:粒子群(PSO)
在本文中,我将研究流行的粒子群优化(PSO)算法。 之前,我们曾讨论过优化算法的重要特征,如收敛性、收敛率、稳定性、可伸缩性,并开发了一个测试台,并研究了最简单的 RNG 算法。

DoEasy. 控件(第 4 部分):面板控件,Padding(填充)和 Dock(驻靠)参数
在本文中,我将实现处理 Padding(填充,元素所有侧边的内部缩进/边距)和 Dock(驻靠)参数(对象在其容器中的定位方式)。

数据科学和机器学习(第 14 部分):运用 Kohonen 映射在市场中寻找出路
您是否正在寻找一种可以帮助您驾驭复杂且不断变化的市场的尖端交易方法? Kohonen 映射是一种创新的人工神经网络形式,可以帮助您发现市场数据中隐藏的形态和趋势。 在本文中,我们将探讨 Kohonen 映射的工作原理,以及如何运用它们来开发更智能、更有效的交易策略。 无论您是经验丰富的交易者,还是刚刚起步,您都不想错过这种令人兴奋的新交易方式。

时间序列挖掘的数据标签(第1部分):通过EA操作图制作具有趋势标记的数据集
本系列文章介绍了几种时间序列标记方法,这些方法可以创建符合大多数人工智能模型的数据,而根据需要进行有针对性的数据标记可以使训练后的人工智能模型更符合预期设计,提高我们模型的准确性,甚至帮助模型实现质的飞跃!

MQL5 酷宝书 — 服务
本文讲述了服务的多功能性 — 不需要绑定图的 MQL5 程序。 我还会重点介绍服务与其它 MQL5 程序的区别,并强调开发人员使用服务的细微差别。 作为示例,为读者提供了各种任务,涵盖了可以作为服务实现的各种功能。

时间序列挖掘的数据标签(第2部分):使用Python制作带有趋势标记的数据集
本系列文章介绍了几种时间序列标记方法,这些方法可以创建符合大多数人工智能模型的数据,而根据需要进行有针对性的数据标记可以使训练后的人工智能模型更符合预期设计,提高我们模型的准确性,甚至帮助模型实现质的飞跃!

Scikit-Learn 库中的分类模型及其导出到 ONNX
在本文中,我们将探讨使用 Scikit-Learn 库中所有可用的分类模型来解决 Fisher 鸢尾花数据集的分类任务。我们将尝试把这些模型转换为 ONNX 格式,并在 MQL5 程序中使用生成的模型。此外,我们将在完整的鸢尾花数据集上比较原始模型与其 ONNX 版本的准确性。

群体优化算法:智能水滴(IWD)算法
文章探讨了一种源自无生命自然的有趣算法 - 模拟河床形成过程的智能水滴(IWD,Intelligent Water Drops)。这种算法的理念大大改进了之前的评级领先者 - SDS。与往常一样,新的领先者(修改后的 SDSm)可在附件中找到。

种群优化算法:鱼群搜索(FSS)
鱼群搜索(FSS)是一种新的优化算法,其灵感来自鱼群中鱼的行为,其中大多数(高达 80%)游弋在有组织的亲属群落中。 经证明,鱼类的聚集在觅食效率和保护捕食者方面起着重要作用。

利用 MQL5 的交互式 GUI 改进您的交易图表(第一部分):可移动 GUI(I)
凭借我们的利用 MQL5 创建可移动 GUI 的综合指南,令您的交易策略或实用程序焕发出呈现动态数据的力量。 深入了解图表事件的核心概念,并学习如何在同一图表上设计和实现简单、多个可移动的 GUI。 本文还探讨了往 GUI 上添加元素的过程,从而增强其功能和美观性。

将您自己的LLM集成到EA中(第2部分):环境部署示例
随着人工智能的快速发展,语言模型(LLMs)是人工智能的重要组成部分,因此我们应该思考如何将强大的语言模型集成到我们的算法交易中。对大多数人来说,很难根据他们的需求对这些强大的模型进行微调,在本地部署,然后将其应用于算法交易。本系列文章将采取循序渐进的方法来实现这一目标。

种群优化算法:类电磁算法(EM - ElectroMagnetism)
本文讲述在各种优化问题中采用电磁算法(EM - ElectroMagnetism)的原理、方法和可能性。 EM 算法是一种高效的优化工具,能够处理大量数据和多维函数。

学习如何基于加速(Accelerator)振荡器设计交易系统
我们系列中的一篇新文章,介绍如何通过最流行的技术指标创建简单的交易系统。 我们将学习一个新的加速(Accelerator)振荡器指标,我们将学习如何利用它来设计交易系统。

如何利用 MQL5 创建简单的多币种智能交易系统(第 2 部分):指标信号:多时间帧抛物线 SAR 指标
本文中的多币种智能交易系统是智能交易系统或交易机器人,它仅在一个品种图表上就能交易(开单、平单、和管理订单,例如:尾随停损和止盈)超过 1 个交易品种对。这次我们只用 1 个指标,即抛物线 SAR 或 iSAR, 将其应用在 PERIOD_M15 到 PERIOD_D1 的多个时间帧。

MQL5中的范畴论(第22部分):对移动平均的不同看法
在本文中,我们尝试通过只关注一个指标来简化对这些系列中所涵盖概念的说明,这是最常见的,可能也是最容易理解的。它就是移动平均。在这样做的时候,我们会探讨垂直自然变换的意义和可能的应用。

神经网络实验(第 5 部分):常规化传输到神经网络的输入参数
神经网络是交易者工具包中的终极工具。 我们来检查一下这个假设是否成立。 在交易中运用神经网络,MetaTrader 5 是最接近自给自足的媒介。 为此提供了一个简单的解释。

从头开始开发智能交易系统(第 11 部分):交叉订单系统
在本文中,我们将创建一个交叉订单系统。 有一种类型的资产让交易员的生涯变得非常困难 — 那就是期货合约。 但为什么令他们的职业生涯变得如此困难?

使用 Python 和 MetaTrader5 python 软件包及 ONNX 模型文件进行深度学习预测和排序
本项目涉及在金融市场中使用 Python 进行基于深度学习的预测。我们将探索使用平均绝对误差(MAE)、均方误差(MSE)和R平方(R2)等关键指标测试模型性能的复杂性,并学习如何将所有内容打包到可执行文件中。我们还将制作一个 ONNX 模型文件以及它的 EA。

数据科学与机器学习(第 07 部分):多项式回归
与线性回归不同,多项式回归是一种很灵活的模型,旨在更好地执行线性回归模型无法处理的任务,我们来找出如何在 MQL5 中制作多项式模型,并据其做出积极东西。

如何将 MetaTrader 5 与 PostgreSQL 连接
本文讲述了将 MQL5 代码与 Postgres 数据库连接的四种方法,并提供了一个分步教程,指导如何使用 Windows 子系统 Linux (WSL) 为 REST API 设置一个开发环境。 所提供 API 的演示应用程序,配以插入数据并查询相应数据表的 MQL5 代码,以及消化此数据的演示智能系统。


DoEasy 函数库中的图形(第九十六部分):窗体对象中的图形和鼠标事件的处理
在本文中,我将启动创建处理窗体对象中的鼠标事件的功能,以及向品种对象添加新属性并跟踪。 此外,我将改进品种对象类,因为图表品种现在有新的属性需要考虑和跟踪。

神经网络实验(第 4 部分):模板
在本文中,我将利用实验和非标准方法开发一个可盈利的交易系统,并验证神经网络是否对交易者有任何帮助。 若在交易中运用神经网络的话, MetaTrader 5 完全可作为一款自给自足的工具。 简单的解释。


DoEasy 函数库中的图形(第九十二部分):标准图形对象记忆类。 对象属性变更历史记录
在本文中,我将创建标准图形对象记忆类,能够在对象修改其属性时保存其过往状态。 反之,这样就能够溯源以前的图形对象状态。

理解编程范式(第 1 部分):开发价格行为智能系统的过程化方式
了解编程范式及利用 MQL5 代码的应用。本文探讨了过程化编程的细节,并通过一个实际示例提供了实经验。您将学习如何利用 EMA 指标和烛条价格数据开发价格行为智能系统。额外,本文还介绍了函数化编程范式。

DoEasy. 控件(第 6 部分):面板控件,自动调整容器大小来适应内部内容
在本文中,我将继续研究面板 WinForms 对象,并实现自动调整大小,以便适应位于面板内的 Dock 对象的常规大小。 此外,我将向品种函数库对象添加新属性。

理解编程范式(第 1 部分):开发价格行为智能系统的过程化方式
了解编程范式及利用 MQL5 代码的应用。本文探讨了过程化编程的细节,并通过一个实际示例提供了实经验。您将学习如何利用 EMA 指标和烛条价格数据开发价格行为智能系统。额外,本文还介绍了函数化编程范式。

基于MQL5的订单剥头皮交易系统
这款MetaTrader 5 EA实现了基于订单流的剥头皮交易策略,并配备了高级风险管理功能。它使用多种技术指标,通过订单的不平衡性来识别交易机会。回测结果显示该策略具有潜在的盈利能力,但同时也突显了需要进一步优化的必要性,尤其是在风险管理和交易结果比率方面。该策略适合经验丰富的交易者,但在实际部署之前,需要进行彻底的测试和深入理解。

测试不同的移动平均类型以了解它们的洞察力
我们都知道移动平均指标对很多交易者的重要性。还有其他移动平均线类型在交易中也很有用,我们将在本文中确定这些类型,并将它们中的每一种与最流行的简单移动平均线进行简单比较,看看哪一种可以显示出最好的结果。