MQL5编程文章

icon

在众多发表的文章中研究 MQL5语言编程交易策略 的多数由您—我们 MQL5.community的会员所作。文章以类别分组来帮助您迅速找到任何有关MQL5编程问题的答案:集成,测试,交易策略等等。

Follow our 新发表讨论它们在 MQL5.community论坛

添加一个新的文章
最近 | 最佳
preview
探索创建多彩烛条的选项

探索创建多彩烛条的选项

在本文中,我将探讨创建烛条自定义指标的可能性,并指出它们的优缺点。
preview
创建一个行情卷播面板:改进版

创建一个行情卷播面板:改进版

您如何看待复查我们的行情卷播面板基本版的主意? 我们改进面板要做的第一件事就是能够添加图像,例如资产徽标或其它图像,从而用户可以迅速、轻松地识别所示品种。
preview
在莫斯科交易所(MOEX)里使用破位挂单的自动兑换网格交易

在莫斯科交易所(MOEX)里使用破位挂单的自动兑换网格交易

本文探讨在莫斯科交易所(MOEX)里基于破位挂单的网格交易方法如何在 MQL5 智能系统中实现。 在市场上进行交易时,最简单的策略之一是设计“捕捉”市场价格的订单网格。
preview
如何用 MQL5 创建自定义真实强度指数指标

如何用 MQL5 创建自定义真实强度指数指标

这是一篇关于如何创建自定义指标的新文章。 这一次,我们将与真实强度指数(TSI)共事,并基于它创建一个智能系统。
preview
交易中的追踪止损

交易中的追踪止损

在本文中,我们将研究追踪止损在交易中的使用。我们将评估它的实用性和有效性以及如何使用它。追踪止损的效率很大程度上取决于价格波动和止损水平的选择。可以使用各种方法来设置止损。
扩充策略构建器功能
扩充策略构建器功能

扩充策略构建器功能

在前两篇文章之中,我们讨论了 Merrill (美林)形态针对各种数据类型的应用。 并开发了一款应用程序来测试提出的思路。 在本文中,我们将继续策略构建器的工作,来提高其效率,并实现新的功能。
preview
艾伦·安德鲁斯和他的时间序列分析技术

艾伦·安德鲁斯和他的时间序列分析技术

艾伦·安德鲁斯(Alan Andrews)是现世代在交易领域最著名的“教育家”之一。 他的“草叉”几乎包含在所有现代报价分析程序当中。 但大多数交易者没机会用过此工具,甚至是其提供的一小部分。 此外,安德鲁斯最初的培训课程不仅包括对草叉的描述(尽管它仍然是主要工具),还包括其它一些有用的结构。 本文提供了对安德鲁斯在其原始课程中教授的奇妙图表分析方法的见解。 (流量焦虑用户)请当心,会有很多图像。
preview
一张图表上的多个指标(第 05 部分):将 MetaTrader 5 转变为 RAD 系统(I)

一张图表上的多个指标(第 05 部分):将 MetaTrader 5 转变为 RAD 系统(I)

有很多人不知道如何编程,但他们很有创造力,亦有杰出的想法。 然而,由于缺乏编程知识,他们无法实现这些想法。 我们一起看看如何利用 MetaTrader 5 平台本身创建图表交易,就如同它是一个 IDE。
preview
种群优化算法:萤火虫算法(FA)

种群优化算法:萤火虫算法(FA)

在本文中,我将研究萤火虫算法(FA)优化方法。 致谢优化修订,该算法已从局外人变成了评级表上的真正领先者。
preview
MQL5 中的矩阵和向量操作

MQL5 中的矩阵和向量操作

MQL5 中引入了矩阵和向量,用于实现数学解决方案的高效操作。 新类型提供了内置方法,能够创建接近数学标记符号的简洁易懂的代码。 数组提供了广泛的功能,但在很多情况下,矩阵的效率要高得多。
preview
神经网络变得轻松(第二十一部分):变分自动编码器(VAE)

神经网络变得轻松(第二十一部分):变分自动编码器(VAE)

在上一篇文章中,我们已熟悉了自动编码器算法。 像其它任何算法一样,它也有其优点和缺点。 在其原始实现中,自动编码器会尽可能多地将对象与训练样本分开。 这次我们将讨论如何应对它的一些缺点。
preview
MetaTrader 中的多机器人:从单图表中启动多个机器人

MetaTrader 中的多机器人:从单图表中启动多个机器人

在本文中,我将研究一个简单的模板,用来创建通用的 MetaTrader 机器人,该机器人可以在多个图表上使用,同时仅附加到一个图表,无需在每个单独的图表上为每个机器人实例进行配置。
DoEasy 函数库中的图形(第七十七部分):阴影对象类
DoEasy 函数库中的图形(第七十七部分):阴影对象类

DoEasy 函数库中的图形(第七十七部分):阴影对象类

在本文中,我将为阴影对象创建一个单独类,它是图形元素对象的衍生后代,并加入渐变填充对象背景的功能。
preview
从头开始开发智能交易系统(第 18 部分):新订单系统 (I)

从头开始开发智能交易系统(第 18 部分):新订单系统 (I)

这是新订单系统的第一部分。 自从我们在文章中开始打造这个 EA 以来,它已经历了各种变化和改进,同时保持了相同的图表订单系统模型。
preview
种群优化算法:人工蜂群(ABC)

种群优化算法:人工蜂群(ABC)

在本文中,我们将研究人工蜂群的算法,并用研究函数空间得到的新原理来补充我们的知识库。 在本文中,我将陈列我对经典算法版本的解释。
preview
在一张图表上的多个指标(第 02 部分):首次实验

在一张图表上的多个指标(第 02 部分):首次实验

在前一篇文章“在一张图表上的多个指标”中,我介绍了如何在一张图表上加载多个指标的概念和基本知识。 在本文中,我将提供源代码,并对其进行详解。
preview
模式搜索的暴力算法(第三部分):新视野

模式搜索的暴力算法(第三部分):新视野

本文延续了暴力算法的主题,并在程序算法中引入了市场分析的新机会,从而加快了分析速度,提高了结果质量。新的添加使得在这种方法中可以看到最高质量的全局模式。
MetaTrader应用商店2013年第三季度业绩
MetaTrader应用商店2013年第三季度业绩

MetaTrader应用商店2013年第三季度业绩

又过了一个季度,我们已决定统计MetaTrader 应用商店的业绩 - MetaTrader平台最大的交易机器人和技术指标商店。 直至报告季度末期,有500多名开发者已经将他们的1200个产品放入MetaTrader 应用商店。
MQL5 Cookbook: 减少过度配合的影响以及处理报价缺失
MQL5 Cookbook: 减少过度配合的影响以及处理报价缺失

MQL5 Cookbook: 减少过度配合的影响以及处理报价缺失

无论您使用何种交易策略,总会有一个问题:怎样选择参数以保证未来的利润。本文提供了一个EA交易的实例,使您可以同时优化多个交易品种的参数,这种方法是未了减少参数的过度配合以及处理在研究中来自单个交易品种的数据不足的问题。
preview
重温默里(Murrey)系统

重温默里(Murrey)系统

图形价格分析系统在交易者中当之无愧地广受欢迎。 在本文中,我将讲述完整的默里(Murrey)系统,包括其著名的级别,以及其它一些评估当前价格位置,并据其做出交易决策的实用技术。
preview
种群优化算法:灰狼优化器(GWO)

种群优化算法:灰狼优化器(GWO)

我们来研究一种最新的现代优化算法 — 灰狼优化。 测试函数的原始行为令该算法成为以前研究过的算法中最有趣的算法之一。 这是训练神经网络的顶级算法之一,具有许多变量的平滑函数。
preview
学习如何基于 MFI 设计交易系统

学习如何基于 MFI 设计交易系统

这篇新文章出自我们的系列文章,是有关基于最流行的技术指标设计交易系统,它研究了一个新的技术指标 — 资金流动性指数(MFI)。 我们将详细学习它,利用 MQL5 开发一个简单的交易系统,并在 MetaTrader 5 中执行它。
MQL5 信号的优势
MQL5 信号的优势

MQL5 信号的优势

MetaTrader 5 最近引入了交易信号服务,允许交易者复制任何信号提供者的交易操作。用户可以于其账户选择任何信号、执行订阅并复制所有交易记录。而信号提供者可以设定其订阅价格,并从其订阅者每月收取固定的费用。
preview
DoEasy. 控件 (第 1 部分): 第一步

DoEasy. 控件 (第 1 部分): 第一步

本文开始延展话题,介绍如何利用 MQL5 仿照 Windows 窗体样式创建控件。 我感兴趣的第一个对象是创建面板(panel)类。 若是没有控件,那么管理就会变得越来越困难。 因此,我将仿照 Windows 窗体样式创建所有可能的控件。
preview
掌握 MQL5:从入门到精通(第二部分)基本数据类型和变量的使用

掌握 MQL5:从入门到精通(第二部分)基本数据类型和变量的使用

这是初学者系列的延续。本文将介绍如何创建常量和变量、写入日期、颜色和其他有用的数据。我们将学习如何创建枚举,如一周中的天数或线条样式(实线、虚线等)。变量和表达式是编程的基础。它们肯定存在于99%以上的程序中,因此理解它们至关重要。因此,如果你是编程新手,这篇文章会对你非常有用。所需的编程知识水平:非常基础,在我上一篇文章(见开头的链接)的范围内。
DoEasy 函数库中的时间序列(第六十一部分):品种即时报价序列集合
DoEasy 函数库中的时间序列(第六十一部分):品种即时报价序列集合

DoEasy 函数库中的时间序列(第六十一部分):品种即时报价序列集合

鉴于程序在其运行时可能会用到不同的品种,因此应为每个品种创建一个单独的列表。 在本文中,我将把这些列表合并到一个即时报价数据集合。 实际上,这将是一个常规列表,基于指向标准库 CObject 类及其衍生类实例指针的动态数组。
preview
数据科学与机器学习 — 神经网络(第 01 部分):前馈神经网络解密

数据科学与机器学习 — 神经网络(第 01 部分):前馈神经网络解密

许多人喜欢它们,但却只有少数人理解神经网络背后的整个操作。 在本文中,我尝试用淳朴的语言来解释前馈多层感知,解密其封闭大门背后的一切。
preview
神经网络实验(第 6 部分):自给自足的价格预测工具 — 感知器

神经网络实验(第 6 部分):自给自足的价格预测工具 — 感知器

本文提供了一个的示例,运用感知器作为自给自足的价格预测工具,展示其一般概念和最简单的已制备智能系统,然后是其优化结果。
preview
学习如何基于建仓/派发(AD)设计交易系统

学习如何基于建仓/派发(AD)设计交易系统

欢迎阅读本系列的新文章,了解如何基于最流行的技术指标设计交易系统。 在本文中,我们将学习一种新的技术指标,称为建仓/派发指标,并了解如何基于简单的 AD 交易策略设计一款 MQL5 交易系统。
preview
在 HarmonyOS NEXT 上安装 MetaTrader 5 和其他 MetaQuotes 应用程序

在 HarmonyOS NEXT 上安装 MetaTrader 5 和其他 MetaQuotes 应用程序

使用卓易通在 HarmonyOS NEXT 设备上轻松安装 MetaTrader 5 和其他 MetaQuotes 应用程序。为您的手机或笔记本电脑提供详细的分步指南。
preview
神经网络变得轻松(第三十五部分):内在好奇心模块

神经网络变得轻松(第三十五部分):内在好奇心模块

我们继续研究强化学习算法。 到目前为止,我们所研究的所有算法都需要创建一个奖励政策,从而令代理者能够每次从一个系统状态过渡到另一个系统状态的转换中估算其每个动作。 然而,这种方式人为因素相当大。 在实践中,动作和奖励之间存在一些时间滞后。 在本文中,我们将领略一种模型训练算法,该算法可以操控从动作到奖励的各种时间延迟。
preview
基于MQL5的订单剥头皮交易系统

基于MQL5的订单剥头皮交易系统

这款MetaTrader 5 EA实现了基于订单流的剥头皮交易策略,并配备了高级风险管理功能。它使用多种技术指标,通过订单的不平衡性来识别交易机会。回测结果显示该策略具有潜在的盈利能力,但同时也突显了需要进一步优化的必要性,尤其是在风险管理和交易结果比率方面。该策略适合经验丰富的交易者,但在实际部署之前,需要进行彻底的测试和深入理解。
preview
从头开始开发智能交易系统(第 28 部分):面向未来((III)

从头开始开发智能交易系统(第 28 部分):面向未来((III)

我们的订单系统有一项任务仍然尚未完成,但我们终将把它搞定。 MetaTrader 5 提供了一个允许创建和更正订单参数值的单据系统。 该思路是拥有一个智能系统,可令相同的票据系统更快、更高效。
我们如何开发MetaTrader 信号服务和群组交易
我们如何开发MetaTrader 信号服务和群组交易

我们如何开发MetaTrader 信号服务和群组交易

我们持续加强信号服务,完善机制,添加新的功能并修复缺陷。2012年的MetaTrader信号服务和当前的MetaTrader信号服务就像两个完全不同的服务。目前,我们正在实施 虚拟主机云服 务,它由一个服务器网络组成用来支持特定版本的MetaTrader客户端。
DoEasy 库中的其他类(第六十八部分):图表窗口对象类和图表窗口中的指标对象类
DoEasy 库中的其他类(第六十八部分):图表窗口对象类和图表窗口中的指标对象类

DoEasy 库中的其他类(第六十八部分):图表窗口对象类和图表窗口中的指标对象类

在本文中,我将继续开发图表对象类。 我将添加含有可用指标列表的图表窗口对象列表。
DoEasy 函数库中的时间序列(第三十六部分):所有用到的品种周期的时间序列对象
DoEasy 函数库中的时间序列(第三十六部分):所有用到的品种周期的时间序列对象

DoEasy 函数库中的时间序列(第三十六部分):所有用到的品种周期的时间序列对象

在本文中我们将探讨,把每个用到的品种周期的柱形对象列表合并到单一品种时间序列对象之中。 因此,每个品种均含一个对象,存储所有已用到品种时间序列周期的列表。
preview
优化结果的可视化评估

优化结果的可视化评估

在本文中,我们将研究如何建立所有优化通测的图形,以及选择最优结果的自定义准则。 我们还将看到如何利用网站上发表的文章和论坛评论,在几乎不了解 MQL5 的情况下创建所需的解决方案。
preview
神经网络变得轻松(第二十部分):自动编码器

神经网络变得轻松(第二十部分):自动编码器

我们继续研究无监督学习算法。 一些读者可能对最近发表的与神经网络主题的相关性有疑问。 在这篇新文章中,我们回到了对神经网络的研究。
preview
使用MQL5轻松创建图形面板

使用MQL5轻松创建图形面板

在这篇文章中,我们将为任何需要创建交易中最有价值和最有用的工具之一的人提供一个简单易行的指南,即简化和轻松执行交易任务的图形面板,这有助于节省时间,并在不受任何干扰的情况下更多地关注您的交易过程本身。
preview
从头开始开发智能交易系统(第 25 部分):提供系统健壮性(II)

从头开始开发智能交易系统(第 25 部分):提供系统健壮性(II)

在本文中,我们将朝着 EA 的性能迈出最后一步。 为此,请做好长时间阅读的准备。 为了令我们的智能交易系统可靠,我们首先从代码中删除不属于交易系统的所有内容。