MQL5编程文章

icon

在众多发表的文章中研究 MQL5语言编程交易策略 的多数由您—我们 MQL5.community的会员所作。文章以类别分组来帮助您迅速找到任何有关MQL5编程问题的答案:集成,测试,交易策略等等。

Follow our 新发表讨论它们在 MQL5.community论坛

添加一个新的文章
最近 | 最佳
在交易中应用 OLAP(第 3 部分):为开发交易策略而分析报价
在交易中应用 OLAP(第 3 部分):为开发交易策略而分析报价

在交易中应用 OLAP(第 3 部分):为开发交易策略而分析报价

在本文中,我们将继续研讨在交易中运用 OLAP 技术。 我们会扩展前两篇文章中表述的功能。 这次我们将研究报价的操盘分析。 我们还将基于所汇集的历史数据,推导并检验交易策略的设想。 本文推介了基于柱线形态研究和自适应交易的智能交易系统。
preview
神经网络变得轻松(第八部分):关注机制

神经网络变得轻松(第八部分):关注机制

在之前的文章中,我们已经测试了组织规划神经网络的各种选项。 我们还研究了自图像处理算法中借鉴而来的卷积网络。 在本文中,我建议研究关注机制,它的出现为开发语言模型提供了动力。
preview
种群优化算法:蚁群优化(ACO)

种群优化算法:蚁群优化(ACO)

这次我将分析蚁群优化算法。 该算法非常有趣且复杂。 在本文中,我尝试创建一种新型的 ACO。
preview
学习如何基于 OBV 设计交易系统

学习如何基于 OBV 设计交易系统

这是一篇新文章,将针对初学者继续我们的系列,介绍如何基于一些流行指标设计交易系统。 我们将学习一个新的指标,即能量潮(OBV),我们将学习如何使用并基于它来设计交易系统。
preview
学习如何基于奥森姆(Awesome)振荡器设计交易系统

学习如何基于奥森姆(Awesome)振荡器设计交易系统

在我们系列的这篇新文章中,我们将学习一种也许对我们的交易有用的新技术工具。 它是奥森姆(Awesome)振荡器((AO)指标。 我们将学习如何基于该指标设计交易系统。
preview
神经网络变得轻松(第二十七部分):深度 Q-学习(DQN)

神经网络变得轻松(第二十七部分):深度 Q-学习(DQN)

我们继续研究强化学习。 在本文中,我们将与深度 Q-学习方法打交道。 DeepMind 团队曾运用这种方法创建了一个模型,在玩 Atari 电脑游戏时其表现优于人类。 我认为评估该技术来解决交易问题的可能性将会很有益处。
preview
神经网络实验(第 2 部分):智能神经网络优化

神经网络实验(第 2 部分):智能神经网络优化

在本文中,我将利用实验和非标准方法开发一个可盈利的交易系统,并验证神经网络是否对交易者有任何帮助。 若在交易中运用神经网络的话, MetaTrader 5 完全可作为一款自给自足的工具。
preview
基于改进的十字星(Doji)烛条形态识别指标的交易策略

基于改进的十字星(Doji)烛条形态识别指标的交易策略

基于元柱线的指标比之传统指标,能检测到的蜡烛更多。 我们来检查一下这能否在自动交易中提供真正的益处。
MetaTrader 4 与 MetaTrader 5 交易信号组件
MetaTrader 4 与 MetaTrader 5 交易信号组件

MetaTrader 4 与 MetaTrader 5 交易信号组件

MetaTrader 4 和 MetaTrader 5 用户最近得到了成为“信号提供方”并赚取更多收益的机会。现在,您可以利用新组件,在您的网站、博客或社交网络上展示您的成功交易了。使用组件的好处显而易见:它们会提高“信号提供方”的受欢迎程度、树立其作为成功交易者的声名,并吸引到新的“订阅者”。在其它网站上放置这些组件的所有交易者,也都享受到了上述好处。
轻松快捷开发 MetaTrader 程序的函数库(第 二十三部分):基准交易类 - 基准类,有效参数验证
轻松快捷开发 MetaTrader 程序的函数库(第 二十三部分):基准交易类 - 基准类,有效参数验证

轻松快捷开发 MetaTrader 程序的函数库(第 二十三部分):基准交易类 - 基准类,有效参数验证

在本文中,我们继续开发交易类,实现错误交易订单参数值的监控,以及交易事件的语音。
利用 MQL5 和 MQL4 实现的选择和导航实用程序:添加"homework"选项卡并保存图形对象
利用 MQL5 和 MQL4 实现的选择和导航实用程序:添加"homework"选项卡并保存图形对象

利用 MQL5 和 MQL4 实现的选择和导航实用程序:添加"homework"选项卡并保存图形对象

在本文中,我们打算扩展先前创建的实用程序功能,添加用于选择所需品种的选项卡。 我们还将学习如何保存我们在特定品种图表上创建的图形对象,这样我们就不必再次创建它们。 此外,我们将发掘如何仅使用已操控经指定网站初步遴选的品种。
最新的改革
最新的改革

最新的改革

看一看您的交易终端。您能看到哪些价格展示方式?柱、烛形图和线条。我们追求的是时间和价格,但却只能由价格获利。那么,分析市场时,我们能否只关注价格呢?本文会针对点数图("圈圈叉叉")提出一种算法和脚本 - 已将各种各样的价格模式考虑在内,而其实际应用亦于提供的建议中列出。
preview
非线性指标

非线性指标

在本文中,我将尝试研究一些构建非线性指标的方法,并探索其在交易中的用处。 MetaTrader 交易平台中有相当多的指标采用非线性方式。
preview
如何选择智能系统:拒绝一款交易机器人的 20 条强大准则

如何选择智能系统:拒绝一款交易机器人的 20 条强大准则

本文尝试回答这个问题:我们如何选择正确的智能系统? 哪些最适合我们的投资组合,我们如何过滤市场上提供的庞大交易机器人列表? 本文将介绍二十条明确而强大的准则来拒绝一款智能系统。 每条提出的准则都将得到很好的解释,从而帮助您做出更持久的决定,并为您建立一个更有前途的智能系统集合,从而赚取利润。
preview
一项智能交易系统失败原因分析

一项智能交易系统失败原因分析

本文针对货币数据进行了一次分析,从而能更好地理解为什么智能交易系统在某些时段表现良好,而在其它时段表现不佳。
preview
从头开始开发智能交易系统(第 20 部分):新订单系统 (III)

从头开始开发智能交易系统(第 20 部分):新订单系统 (III)

我们继续实现新的订单系统。 创建这样的一个系统需要熟练地掌握 MQL5,以及了解 MetaTrader 5 平台的实际工作方式,及其提供的资源。
MetaTrader市场概述(图表)
MetaTrader市场概述(图表)

MetaTrader市场概述(图表)

几周前我们发布了自由职业者服务的信息图表。我们也承诺将透露一些市场统计数据。现在,我们邀请您来检验我们已经收集的数据。
preview
从头开始开发智能交易系统(第 26 部分):面向未来(I)

从头开始开发智能交易系统(第 26 部分):面向未来(I)

今天,我们将把我们的订单系统提升到一个新的层次。 但在此之前,我们需要解决少量问题。 我们现有的一些问题,是与在交易日里我们想要如何工作,以及我们做什么事情相关。
preview
从自营公司那里吸取一些教训(第 1 部分)— 简介

从自营公司那里吸取一些教训(第 1 部分)— 简介

在这篇介绍性文章中,我将讨论从自营交易公司实施的挑战规则中吸取的一些教训。 这对于初学者和那些努力在这个交易世界中站稳脚跟的人来说尤其重要。 后续文章会介绍代码实现。
基于 CChartObject 类设计和实施新 GUI 组件
基于 CChartObject 类设计和实施新 GUI 组件

基于 CChartObject 类设计和实施新 GUI 组件

在我撰写了关于通过 GUI 界面实现半自动“EA 交易”的前作后,结果表明针对更复杂的指标和“EA 交易”,最好使用新的功能来改善界面。在熟悉 MQL5 标准库类后,我实施了一些新的组件。本文介绍新 MQL5 GUI 组件的设计和实施过程;这些组件可用于指标和“EA 交易”。本文中介绍的组件包括:CChartObjectSpinner、CChartObjectProgressBar 和 CChartObjectEditTable。
MQL5 中的电子表格
MQL5 中的电子表格

MQL5 中的电子表格

本文介绍在其第一个维度中包含不同类型的数据的动态二维数组的类。以表格的形式存储数据可方便地解决与安排、存储和操作不同类型的绑定信息相关的各种问题。实施表格处理功能性的类的源代码已附于本文。
preview
学习如何基于比尔·威廉姆斯(Bill Williams)的 MFI 设计交易系统

学习如何基于比尔·威廉姆斯(Bill Williams)的 MFI 设计交易系统

这是该系列中的一篇新文章,我们将学习如何根据流行的技术指标设计交易系统。 这次我们将涵盖比尔·威廉姆斯(Bill Williams)的市场促进指数(BW MFI)。
preview
创建多交易品种、多周期指标

创建多交易品种、多周期指标

在本文中,我们将研究创建多交易品种、多周期指标的原则。我们还将了解如何从 EA 交易和其他指标中获取此类指标的数据。我们将探讨在 EA 交易和指标中使用多指标的主要功能,并将了解如何通过自定义指标缓冲区绘制它们。
preview
神经网络变得轻松(第七部分):自适应优化方法

神经网络变得轻松(第七部分):自适应优化方法

在之前的文章中,我们利用随机梯度下降法针对网络中的所有神经元按照相同的学习率训练神经网络。 在本文中,我提议着眼于自适应学习方法,该方法能够改变每个神经元的学习率。 我们还将研究这种方法的利弊。
preview
模式搜索的暴力方法

模式搜索的暴力方法

在本文中,我们将搜索市场模式,根据确定的模式创建 EA 交易,并检查这些模式,如果它们保持有效的话,保持有效的时间有多少。
preview
MQL5 简介(第 1 部分):算法交易新手指南

MQL5 简介(第 1 部分):算法交易新手指南

通过我们的 MQL5 编程新手指南,进入算法交易的迷人领域。在揭开自动化交易世界的神秘面纱之际,让我们探索支持MetaTrader 5 的语言 MQL5 的精髓。从了解基础知识到迈出编码的第一步,本文是您即使没有编程背景也能释放算法交易潜力的关键。加入我们的旅程,在令人兴奋的 MQL5 世界里,体验简单与复杂的结合吧。
preview
数据科学和机器学习(第 05 部分):决策树

数据科学和机器学习(第 05 部分):决策树

决策树模仿人类的方式针对数据进行分类。 我们看看如何构建这棵树,并利用它们来分类和预测一些数据。 决策树算法的主要目标是将含有杂质的数据分离成纯节点或靠近节点。
preview
创建一个行情卷播面板:改进版

创建一个行情卷播面板:改进版

您如何看待复查我们的行情卷播面板基本版的主意? 我们改进面板要做的第一件事就是能够添加图像,例如资产徽标或其它图像,从而用户可以迅速、轻松地识别所示品种。
preview
直推和主动机器学习中的梯度提升

直推和主动机器学习中的梯度提升

在本文中,我们将探讨利用真实数据的主动机器学习方法,并讨论它们的优缺点。也许你会发现这些方法很有用,并将它们包含在你的机器学习模型库中。直推是由支持向量机(SVM)的共同发明者弗拉基米尔·瓦普尼克(Vladimir Vapnik)提出的。
preview
探索创建多彩烛条的选项

探索创建多彩烛条的选项

在本文中,我将探讨创建烛条自定义指标的可能性,并指出它们的优缺点。
MetaTrader应用商店2013年第三季度业绩
MetaTrader应用商店2013年第三季度业绩

MetaTrader应用商店2013年第三季度业绩

又过了一个季度,我们已决定统计MetaTrader 应用商店的业绩 - MetaTrader平台最大的交易机器人和技术指标商店。 直至报告季度末期,有500多名开发者已经将他们的1200个产品放入MetaTrader 应用商店。
扩充策略构建器功能
扩充策略构建器功能

扩充策略构建器功能

在前两篇文章之中,我们讨论了 Merrill (美林)形态针对各种数据类型的应用。 并开发了一款应用程序来测试提出的思路。 在本文中,我们将继续策略构建器的工作,来提高其效率,并实现新的功能。
学习如何基于 Stochastic 设计交易系统
学习如何基于 Stochastic 设计交易系统

学习如何基于 Stochastic 设计交易系统

在本文中,我们继续我们的研究系列 — 这次,我们将学习如何基于最流行的技术指标之一 Stochastic 振荡器指标设计交易系统。
preview
如何用 MQL5 创建自定义真实强度指数指标

如何用 MQL5 创建自定义真实强度指数指标

这是一篇关于如何创建自定义指标的新文章。 这一次,我们将与真实强度指数(TSI)共事,并基于它创建一个智能系统。
preview
从头开始开发智能交易系统(第 18 部分):新订单系统 (I)

从头开始开发智能交易系统(第 18 部分):新订单系统 (I)

这是新订单系统的第一部分。 自从我们在文章中开始打造这个 EA 以来,它已经历了各种变化和改进,同时保持了相同的图表订单系统模型。
preview
如何利用 MQL5 创建简单的多币种智能交易系统(第 1 部分):基于 ADX 指标的信号,并结合抛物线 SAR

如何利用 MQL5 创建简单的多币种智能交易系统(第 1 部分):基于 ADX 指标的信号,并结合抛物线 SAR

本文中的多币种智能交易系统是交易机器人,它只能在单一品种图表中运营,但可交易(开单、平单和管理订单)超过一个品种对。
DoEasy 函数库中的图形(第七十七部分):阴影对象类
DoEasy 函数库中的图形(第七十七部分):阴影对象类

DoEasy 函数库中的图形(第七十七部分):阴影对象类

在本文中,我将为阴影对象创建一个单独类,它是图形元素对象的衍生后代,并加入渐变填充对象背景的功能。
preview
MetaTrader 中的多机器人:从单图表中启动多个机器人

MetaTrader 中的多机器人:从单图表中启动多个机器人

在本文中,我将研究一个简单的模板,用来创建通用的 MetaTrader 机器人,该机器人可以在多个图表上使用,同时仅附加到一个图表,无需在每个单独的图表上为每个机器人实例进行配置。
MQL5 Cookbook: 减少过度配合的影响以及处理报价缺失
MQL5 Cookbook: 减少过度配合的影响以及处理报价缺失

MQL5 Cookbook: 减少过度配合的影响以及处理报价缺失

无论您使用何种交易策略,总会有一个问题:怎样选择参数以保证未来的利润。本文提供了一个EA交易的实例,使您可以同时优化多个交易品种的参数,这种方法是未了减少参数的过度配合以及处理在研究中来自单个交易品种的数据不足的问题。
DoEasy 函数库中的时间序列(第六十一部分):品种即时报价序列集合
DoEasy 函数库中的时间序列(第六十一部分):品种即时报价序列集合

DoEasy 函数库中的时间序列(第六十一部分):品种即时报价序列集合

鉴于程序在其运行时可能会用到不同的品种,因此应为每个品种创建一个单独的列表。 在本文中,我将把这些列表合并到一个即时报价数据集合。 实际上,这将是一个常规列表,基于指向标准库 CObject 类及其衍生类实例指针的动态数组。