针对市场分析的数据库的具体应用
处理数据成为现代软件的主要任务 - 独立应用程序和网络应用程序都是如此。为解决此问题而创建了专业软件。这些软件被称为数据库管理系统 (DBMS),能够针对它们的计算机存储和处理对数据进行构建、系统化和组织。对于交易,大多数分析师并不在他们的工作中使用数据库。但是对于一些任务,必须使用此类解决方案。本文提供了一个在客户端-服务器和文件-服务器架构中都能将数据保存到数据库或从数据库加载数据的指标例子。
数据科学与机器学习(第 11 部分):朴素贝叶斯(Bayes),交易中的概率论
概率交易就像走钢丝一样 — 它需要精确、平衡和对风险的敏锐理解。 在交易世界中,概率就是一切。 这是成功与失败、盈利与亏损的区别。 通过利用概率的力量,交易者可以做出明智的决策,有效地管理风险,并实现他们的财务目标。 故此,无论您是经验丰富的投资者还是交易新手,了解概率都是解锁您的交易潜能的关键。 在本文中,我们将探索令人兴奋的概率交易世界,并向您展示如何将您的交易博弈提升到一个新的水平。
DoEasy 函数库中的图形(第七十五部分):处理基本图形元素图元和文本的方法
在本文中,我将继续开发由 CCanvas 标准库类提供强力支持的所有函数库图形对象的基准图形元素类。 我将创建绘制图元和在图形元素对象上显示文本的方法。
MQL5 Cookbook: 处理典型图表事件
本文研究典型图表事件,包括其处理例程。我们将专注于鼠标事件,按键,创建/修改/删除图形对象,鼠标点击图表上的图形对象,用鼠标移动图形对象,在文本域中完成文本编辑,以及在图表上修改事件。研究的每一类事件,都有一个 MQL5 程序例程。
开发多币种 EA 交易(第 1 部分):多种交易策略的协作
交易策略是多种多样的,因此,或许可以采用几种策略并行运作,以分散风险,提高交易结果的稳定性。但是,如果每个策略都作为单独的 EA 交易来实现,那么在一个交易账户上管理它们的工作就会变得更加困难。为了解决这个问题,在一个 EA 中实现不同交易策略的操作是合理的。
学习如何基于比尔·威廉姆斯(Bill Williams)的 MFI 设计交易系统
这是该系列中的一篇新文章,我们将学习如何根据流行的技术指标设计交易系统。 这次我们将涵盖比尔·威廉姆斯(Bill Williams)的市场促进指数(BW MFI)。
价格走势模型及其主要规定(第 1 部分):概率价格域演化方程与发生的可观测随机游走
本文研究的是概率价格域演化方程,与即将到来的价格尖峰准则。 它还揭示了图表上价格数值的本质,以及这些数值随机游走的发生机制。
数据科学和机器学习(第 05 部分):决策树
决策树模仿人类的方式针对数据进行分类。 我们看看如何构建这棵树,并利用它们来分类和预测一些数据。 决策树算法的主要目标是将含有杂质的数据分离成纯节点或靠近节点。
如何准备 MetaTrader 5 报价用于其他应用程序
本文介绍创建目录、复制数据、归档、使用 Market Watch(市场报价)或常用列表中的交易品种以及错误处理等示例。实际上,所有这些元素可集中在一个以用户定义格式归档数据的脚本中。
为EA交易提供指标的现成模板(第3部分):趋势指标
在这篇参考文章中,我们将研究趋势指标类别中的标准指标。我们将创建现成的模板,用于EA中的指标使用——声明和设置参数、指标初始化和析构,以及从EA中的指示符缓冲区接收数据和信号。
神经网络变得轻松(第二十七部分):深度 Q-学习(DQN)
我们继续研究强化学习。 在本文中,我们将与深度 Q-学习方法打交道。 DeepMind 团队曾运用这种方法创建了一个模型,在玩 Atari 电脑游戏时其表现优于人类。 我认为评估该技术来解决交易问题的可能性将会很有益处。
神经网络实验(第 2 部分):智能神经网络优化
在本文中,我将利用实验和非标准方法开发一个可盈利的交易系统,并验证神经网络是否对交易者有任何帮助。 若在交易中运用神经网络的话, MetaTrader 5 完全可作为一款自给自足的工具。
学习如何基于奥森姆(Awesome)振荡器设计交易系统
在我们系列的这篇新文章中,我们将学习一种也许对我们的交易有用的新技术工具。 它是奥森姆(Awesome)振荡器((AO)指标。 我们将学习如何基于该指标设计交易系统。
更好的程序员(第 05 部分):如何成为更迅捷的开发人员
每位开发人员都希望能够更快地编写代码,且能够更快、更有效地编写代码并非只是少数人与生俱来的特殊能力。 这项技能是可通过学习提升的,这就是我在本文中尝试传授的内容。
如何在 MQL5 中使用 ONNX 模型
ONNX(开放式神经网络交换)是一种开源的机器学习模型格式。 在本文中,我们将研究如何创建 CNN-LSTM 模型,来预测金融时间序列。 我们还将展示如何在 MQL5 智能系统中运用创建的 ONNX 模型。
在交易中应用 OLAP(第 3 部分):为开发交易策略而分析报价
在本文中,我们将继续研讨在交易中运用 OLAP 技术。 我们会扩展前两篇文章中表述的功能。 这次我们将研究报价的操盘分析。 我们还将基于所汇集的历史数据,推导并检验交易策略的设想。 本文推介了基于柱线形态研究和自适应交易的智能交易系统。
MetaTrader 4 与 MetaTrader 5 交易信号组件
MetaTrader 4 和 MetaTrader 5 用户最近得到了成为“信号提供方”并赚取更多收益的机会。现在,您可以利用新组件,在您的网站、博客或社交网络上展示您的成功交易了。使用组件的好处显而易见:它们会提高“信号提供方”的受欢迎程度、树立其作为成功交易者的声名,并吸引到新的“订阅者”。在其它网站上放置这些组件的所有交易者,也都享受到了上述好处。
连续前行优化 (第八部分): 程序改进和修复
根据本系列文章的用户和读者的评论和要求,程序已进行了修改。 本文包含一个自动优化器的新版本。 该版本实现了所需的功能,并提供了其他改进,这些是我运用该程序操作时发现的。
最新的改革
看一看您的交易终端。您能看到哪些价格展示方式?柱、烛形图和线条。我们追求的是时间和价格,但却只能由价格获利。那么,分析市场时,我们能否只关注价格呢?本文会针对点数图("圈圈叉叉")提出一种算法和脚本 - 已将各种各样的价格模式考虑在内,而其实际应用亦于提供的建议中列出。
从自营公司那里吸取一些教训(第 1 部分)— 简介
在这篇介绍性文章中,我将讨论从自营交易公司实施的挑战规则中吸取的一些教训。 这对于初学者和那些努力在这个交易世界中站稳脚跟的人来说尤其重要。 后续文章会介绍代码实现。
在 HarmonyOS NEXT 上安装 MetaTrader 5 和其他 MetaQuotes 应用程序
使用卓易通在 HarmonyOS NEXT 设备上轻松安装 MetaTrader 5 和其他 MetaQuotes 应用程序。为您的手机或笔记本电脑提供详细的分步指南。
利用 MQL5 和 MQL4 实现的选择和导航实用程序:添加"homework"选项卡并保存图形对象
在本文中,我们打算扩展先前创建的实用程序功能,添加用于选择所需品种的选项卡。 我们还将学习如何保存我们在特定品种图表上创建的图形对象,这样我们就不必再次创建它们。 此外,我们将发掘如何仅使用已操控经指定网站初步遴选的品种。
神经网络变得轻松(第七部分):自适应优化方法
在之前的文章中,我们利用随机梯度下降法针对网络中的所有神经元按照相同的学习率训练神经网络。 在本文中,我提议着眼于自适应学习方法,该方法能够改变每个神经元的学习率。 我们还将研究这种方法的利弊。
重构MQL5中的经典策略(第三部分):富时100指数预测
在本系列文章中,我们将重新审视一些知名的交易策略,以探究是否可以利用AI来改进这些策略。在今天的文章中,我们将研究富时100指数,并尝试使用构成该指数的部分个股来预测该指数。
从头开始开发智能交易系统(第 20 部分):新订单系统 (III)
我们继续实现新的订单系统。 创建这样的一个系统需要熟练地掌握 MQL5,以及了解 MetaTrader 5 平台的实际工作方式,及其提供的资源。
从头开始开发智能交易系统(第 26 部分):面向未来(I)
今天,我们将把我们的订单系统提升到一个新的层次。 但在此之前,我们需要解决少量问题。 我们现有的一些问题,是与在交易日里我们想要如何工作,以及我们做什么事情相关。
如何选择智能系统:拒绝一款交易机器人的 20 条强大准则
本文尝试回答这个问题:我们如何选择正确的智能系统? 哪些最适合我们的投资组合,我们如何过滤市场上提供的庞大交易机器人列表? 本文将介绍二十条明确而强大的准则来拒绝一款智能系统。 每条提出的准则都将得到很好的解释,从而帮助您做出更持久的决定,并为您建立一个更有前途的智能系统集合,从而赚取利润。
如何利用 MQL5 创建简单的多币种智能交易系统(第 1 部分):基于 ADX 指标的信号,并结合抛物线 SAR
本文中的多币种智能交易系统是交易机器人,它只能在单一品种图表中运营,但可交易(开单、平单和管理订单)超过一个品种对。
基于MQL5的订单剥头皮交易系统
这款MetaTrader 5 EA实现了基于订单流的剥头皮交易策略,并配备了高级风险管理功能。它使用多种技术指标,通过订单的不平衡性来识别交易机会。回测结果显示该策略具有潜在的盈利能力,但同时也突显了需要进一步优化的必要性,尤其是在风险管理和交易结果比率方面。该策略适合经验丰富的交易者,但在实际部署之前,需要进行彻底的测试和深入理解。
山型或冰山型图表
您如何看待往 MetaTrader 5 平台里添加新图表类型的想法? 有人说它缺少其它平台里提供的一些东西。 但事实是,MetaTrader 5 是一个非常实用的平台,因为它允许您做到在许多其它平台上无法完成(或至少不能轻松完成)的事情。
直推和主动机器学习中的梯度提升
在本文中,我们将探讨利用真实数据的主动机器学习方法,并讨论它们的优缺点。也许你会发现这些方法很有用,并将它们包含在你的机器学习模型库中。直推是由支持向量机(SVM)的共同发明者弗拉基米尔·瓦普尼克(Vladimir Vapnik)提出的。