MQL5编程文章

icon

在众多发表的文章中研究 MQL5语言编程交易策略 的多数由您—我们 MQL5.community的会员所作。文章以类别分组来帮助您迅速找到任何有关MQL5编程问题的答案:集成,测试,交易策略等等。

Follow our 新发表讨论它们在 MQL5.community论坛

添加一个新的文章
最近 | 最佳
preview
神经网络变得简单(第 90 部分):时间序列的频率插值(FITS)

神经网络变得简单(第 90 部分):时间序列的频率插值(FITS)

通过研究 FEDformer 方法,我们打开了时间序列频域表述的大门。在这篇新文章中,我们将继续一开始的主题。我们将研究一种方法,据其我们不仅能进行分析,还可以预测特定区域的后续状态。
preview
价格行为分析工具包开发(第12部分):外部资金流(3)趋势图谱(TrendMap)

价格行为分析工具包开发(第12部分):外部资金流(3)趋势图谱(TrendMap)

市场走势由多头与空头之间的力量博弈所决定。由于作用在这些水平上的力量,市场会尊重某些特定价位水平。斐波那契(Fibonacci)水平和成交量加权平均价(VWAP)水平在影响市场行为方面尤为强大。请随我一同探讨本文中基于VWAP和斐波那契水平生成交易信号的策略。
preview
神经网络变得简单(第 61 部分):离线强化学习中的乐观情绪问题

神经网络变得简单(第 61 部分):离线强化学习中的乐观情绪问题

在离线学习期间,我们基于训练样本数据优化了智能体的政策。成品政策令智能体对其动作充满信心。然而,这种乐观情绪并不总是正当的,并且可能会在模型操作期间导致风险增加。今天,我们要寻找降低这些风险的方法之一。
preview
MetaTrader 5 和 R 进行算法交易新手指南

MetaTrader 5 和 R 进行算法交易新手指南

当我们揭开 R 和 MetaTrader 5 无缝结合的艺术面纱时,您将开始一场金融分析与算法交易的精彩探索。本文是您将 R 语言中的分析技巧与 MetaTrader 5 强大的交易功能连接起来的指南。
preview
使用PSAR、Heiken Ashi和深度学习进行交易

使用PSAR、Heiken Ashi和深度学习进行交易

本项目探索深度学习与技术分析的融合,用于在外汇市场测试交易策略。使用Python脚本进行快速实验,结合ONNX模型和传统指标(如PSAR、SMA和RSI)来预测欧元/美元(EUR/USD )的走势。之后,MQL5脚本将此策略引入实时环境,利用历史数据和技术分析帮助交易者做出明智的交易决策。回测结果表明,该策略秉持保守且稳健的运作理念,始终将风险管控置于首位,追求持续稳定的收益增长模式,摒弃激进逐利的行为。
preview
MQL5交易策略自动化(第八部分):构建基于蝴蝶谐波形态的智能交易系统(EA)

MQL5交易策略自动化(第八部分):构建基于蝴蝶谐波形态的智能交易系统(EA)

在本文中,我们将构建一个MQL5智能交易系统(EA),用于检测蝴蝶谐波形态。我们会识别关键转折点,并验证斐波那契(Fibonacci)水平以确认该形态。之后,我们会在图表上可视化该形态,并在得到确认时自动执行交易。
preview
开发回放系统 — 市场模拟(第 11 部分):模拟器的诞生(I)

开发回放系统 — 市场模拟(第 11 部分):模拟器的诞生(I)

为了依据数据形成柱线,我们必须放弃回放,并开始研发一款模拟器。 我们将采用 1-分钟柱线,因为它们所需的难度最小。
preview
如何使用MQL5的控件类创建交互式仪表板/面板(第一部分):设置面板

如何使用MQL5的控件类创建交互式仪表板/面板(第一部分):设置面板

在本文中,我们将使用MQL5的控件类创建一个交互式交易仪表板,旨在简化交易操作。该面板包含标题、用于交易、平仓和信息的导航按钮,以及用于执行交易和管理仓位的专用操作按钮。到文章结束时,你将拥有一个基础面板,为未来的扩展做好准备。
preview
DoEasy. 控件 (第 11 部分): WinForms 对象 — 群组,CheckedListBox WinForms 对象

DoEasy. 控件 (第 11 部分): WinForms 对象 — 群组,CheckedListBox WinForms 对象

本文将讨论 WinForms 对象群组,及创建 CheckBox 对象列表对象。
preview
DoEasy. 控件(第 16 部分):TabControl WinForms 对象 — 多行选项卡标题,拉伸标题适配容器

DoEasy. 控件(第 16 部分):TabControl WinForms 对象 — 多行选项卡标题,拉伸标题适配容器

在本文中,我将继续开发 TabControl,并针对设置标题大小的所有模式,实现选项卡标题在控件所有四个侧边的排列:正常、固定、和靠右填充。
preview
神经网络实验(第 7 部分):传递指标

神经网络实验(第 7 部分):传递指标

传递指标至感知器的示例。本文讲述了一般概念,并展示了最简单的现成智能交易系统,后随其优化和前向验算结果。
preview
开发回放系统 — 市场模拟(第 16 部分):新的类系统

开发回放系统 — 市场模拟(第 16 部分):新的类系统

我们需要更好地组织我们的工作。 代码正在快速增长,如果现在不做,那么以后就变得更不可能了。 我们分而治之。 MQL5 支持类,可协助实现此任务,但为此,我们需要对类有一定的了解。 大概最让初学者困惑的是继承。 在本文中,我们将看到如何以实用和简单的方式来运用这些机制。
preview
DoEasy. 控件 (第 14 部分): 命名图形元素的新算法。 继续操控 TabControl WinForms 对象

DoEasy. 控件 (第 14 部分): 命名图形元素的新算法。 继续操控 TabControl WinForms 对象

在本文中,我将创建一个新算法来为构建自定义图形的所有图形元素命名,并继续开发 TabControl WinForms 对象。
preview
量子计算与交易:价格预测的新方法

量子计算与交易:价格预测的新方法

本文介绍了一种利用量子计算预测金融市场价格走势的创新方法。该方法主要应用量子相位估计(QPE)算法来寻找价格模式的原型,从而使交易者能够显著加快市场数据分析的速度。
preview
种群优化算法:模拟各向同性退火(SIA)算法。第 II 部分

种群优化算法:模拟各向同性退火(SIA)算法。第 II 部分

第一部分专注于众所周知、且流行的算法 — 模拟退火。我们已经通盘研究了它的利弊。本文的第二部分专注于算法的彻底变换,将其转变为一种新的优化算法 — 模拟各向同性退火(SIA)。
preview
射箭算法(Archery Algorithm, AA)

射箭算法(Archery Algorithm, AA)

本文详细探讨了受射箭启发的优化算法——射箭算法(Archery Algorithm, AA),重点介绍了如何使用轮盘赌法(roulette method)作为选择“箭矢”目标区域的机制。该方法允许评估解决方案的质量,并选择最有希望的位置进行进一步的探究。
preview
在MQL5中构建自优化智能交易系统(EA)(第五部分):自适应交易规则

在MQL5中构建自优化智能交易系统(EA)(第五部分):自适应交易规则

如何完美使用指标的原则,并不总是易于遵循。在市场行情较为平稳的情况下,指标可能会意外地给出不构成交易条件的信号,导致算法交易者错失交易机会。本文将提出一个潜在的解决方案,我们将讨论如何构建能够根据现有市场数据调整其交易规则的交易应用程序。
preview
神经网络变得轻松(第四十八部分):降低 Q-函数高估的方法

神经网络变得轻松(第四十八部分):降低 Q-函数高估的方法

在上一篇文章中,我们概述了 DDPG 方法,它允许在连续动作空间中训练模型。然而,与其它 Q-学习方法一样,DDPG 容易高估 Q-函数的数值。这个问题往往会造成训练代理者时选择次优策略。在本文中,我们将研究一些克服上述问题的方式。
preview
如何利用 MQL5 创建简单的多币种智能交易系统(第 4 部分):三角移动平均线 — 指标信号

如何利用 MQL5 创建简单的多币种智能交易系统(第 4 部分):三角移动平均线 — 指标信号

本文中的多币种 EA 是智能交易系统或交易机器人,能从一个品种的图表里交易(开单、平单、及管理订单,例如:尾随止损和止盈)多个品种(货币对)。这次我们只会用到 1 个指标,即多时间帧或单一时间帧中的三角移动平均线。
preview
DoEasy 函数库中的图形(第一百部分):改进扩展标准图形对象的处理

DoEasy 函数库中的图形(第一百部分):改进扩展标准图形对象的处理

在本文中,我将剔除在画布上同时处理扩展(和标准)图形对象和窗体对象方面的明显缺陷,并修复在前一篇文章中执行测试期间检测到的错误。 本文总结了函数库说明的这一部分。
preview
开发回放系统 — 市场模拟(第 03 部分):调整设置(I)

开发回放系统 — 市场模拟(第 03 部分):调整设置(I)

我们从梳理当前状况开始,因为我们尚未以最好的方式开始。 如果我们现在不这样做,我们很快就会遇到麻烦。
preview
数据科学和机器学习(第 28 部分):使用 AI 预测 EURUSD 的多个期货

数据科学和机器学习(第 28 部分):使用 AI 预测 EURUSD 的多个期货

众多人工智能模型的惯常做法是预测单一未来值。不过,在本文中,我们将钻研运用机器学习模型的更强大技术,即预测多个未来值。这种方式被称为多步预测,它令我们不仅能够预测明天的收盘价,还可以预测后天、及更久的收盘价。通过掌握多步骤预测,交易者和数据科学家能够获得更深入的见解,并制定更明智的决策,从而显著增强他们的预测能力和策略计划。
preview
开发回放系统 — 市场模拟(第 06 部分):首次改进(I)

开发回放系统 — 市场模拟(第 06 部分):首次改进(I)

在本文中,我们将开始稳固整个系统,若无,则我们可能无法进行后续步骤。
preview
数据分组处理方法:在MQL5中实现多层迭代算法。

数据分组处理方法:在MQL5中实现多层迭代算法。

在本文中,我们介绍如何在MQL5中实现分组数据处理方法中的多层迭代算法。
preview
股票交易中的非线性回归模型

股票交易中的非线性回归模型

股票交易中的非线性回归模型:能否预测金融市场?让我们考虑创建一个用于预测欧元兑美元(EURUSD)汇率的模型,并基于此模型制作两个交易机器人——分别使用Python和MQL5语言。
preview
基于MQL5的自动化交易策略(第一部分):Profitunity系统(比尔·威廉姆斯的《交易混沌》)

基于MQL5的自动化交易策略(第一部分):Profitunity系统(比尔·威廉姆斯的《交易混沌》)

在本文中,我们研究了比尔·威廉姆斯(Bill Williams)的Profitunity系统,深入剖析其核心组成部分以及在混沌市场中独特的交易方法。我们指导读者在MQL5中实现该系统,专注于自动化关键指标和入场/出场信号。最后,我们对策略进行测试和优化,提供其在不同市场环境下的表现。
preview
种群优化算法:和弦搜索(HS)

种群优化算法:和弦搜索(HS)

在本文中,我将研究和测试最强大的优化算法 — 和弦搜索(HS),其灵感来自寻找完美声音和声的过程。 那么现在什么算法在我们的评级中处于领先地位?
preview
开发回放系统(第 40 部分):启动第二阶段(一)

开发回放系统(第 40 部分):启动第二阶段(一)

今天我们将讨论回放/模拟器系统的新阶段。在这个阶段,谈话才会变得真正有趣,内容也相当丰富。我强烈建议您仔细阅读本文并使用其中提供的链接。这将帮助您更好地理解内容。
preview
理解编程范式(第 2 部分):面向对象方式开发价格行为智能系统

理解编程范式(第 2 部分):面向对象方式开发价格行为智能系统

学习面向对象的编程范式,及其在 MQL5 代码中的应用。这是第二篇文章,更深入地讲解面向对象编程的规范,并通过一个实际示例提供上手经验。您将学习如何运用 EMA 指标,和烛条价格数据,将我们早期开发的过程化价格行为智能系统转换为面向对象的代码。
preview
神经网络变得简单(第 75 部分):提升轨迹预测模型的性能

神经网络变得简单(第 75 部分):提升轨迹预测模型的性能

我们创建的模型变得越来越大,越来越复杂。这不光提高了它们的训练成本,还有操作成本。不过,做出决定所需的时间往往很关键。有关于此,我们来研究在不损失品质的情况下优化模型性能的方法。
preview
威廉·江恩(William Gann)方法(第三部分):占星术是否有效?

威廉·江恩(William Gann)方法(第三部分):占星术是否有效?

行星和恒星的位置会影响金融市场吗?让我们借助统计数据和大数据,踏上一段令人兴奋的探索之旅,进入星星与股票图表交汇的世界。
preview
MQL5中使用坐标下降法的弹性网络回归

MQL5中使用坐标下降法的弹性网络回归

在这篇文章中,我们探索了弹性网络回归的实际实现,以最大限度地减少过拟合,同时自动将有用的预测因子与那些预测能力很小的预测因子区分开来。
preview
种群优化算法:微人工免疫系统(Micro-AIS)

种群优化算法:微人工免疫系统(Micro-AIS)

本文研究一种基于人体免疫系统原理的优化方法 — 微人工免疫系统(Micro-AIS) - AIS 的修订版。Micro-AIS 使用更简单的免疫系统模型,和更简单的免疫信息处理操作。本文还讨论了 Micro-AIS 与传统 AIS 相比的优缺点。
preview
构建和测试 Aroon 交易系统

构建和测试 Aroon 交易系统

在本文中,我们将学习在了解了 Aroon 指标(阿隆指标)的基础知识和基于该指标构建交易系统的必要步骤之后,如何构建 Aroon 交易系统。建立这个交易系统后,我们将对其进行测试,看看它是否能盈利,还是需要进一步优化。
preview
借助成交量精准洞悉交易动态:超越传统OHLC图表

借助成交量精准洞悉交易动态:超越传统OHLC图表

一种将成交量分析与机器学习技术(特别是LSTM神经网络)相结合的算法交易系统。与主要关注价格波动的传统交易方法不同,该系统强调成交量模式及其衍生指标,以预测市场走势。该方法包含三个主要组成部分:成交量衍生指标分析(一阶和二阶导数)、基于LSTM的成交量模式预测,以及传统技术指标。
preview
使用MQL5和Python集成经纪商API与智能交易系统

使用MQL5和Python集成经纪商API与智能交易系统

在本文中,我们将探讨如何将MQL5与Python相结合,以执行与经纪商相关的操作。想象一下,您有一个持续运行的智能交易系统(EA),它托管在虚拟专用服务器(VPS)上,并代表您执行交易。在某个阶段,EA 管理资金的能力变得至关重要。这包括为您的交易账户入金和发起出金等操作。在本文中,我们将阐明这些功能的优势和具体实现方法,从而确保将资金管理无缝地集成到您的交易策略中。敬请关注!
preview
从新手到专家:MQL5中的协作式调试指南

从新手到专家:MQL5中的协作式调试指南

问题解决法能为掌握复杂技能(如MQL5编程)构建高效路径。该方法让您在专注攻克问题的同时,潜移默化地提升技能水平。解决的难题越多,大脑积累的专业知识就越深厚。就我个人而言,调试是精通编程最有效的途径。本文将带你逐步梳理代码清理流程,并探讨将杂乱程序转化为简洁高效代码的核心技巧。阅读本文,洞悉其中的宝贵见解。
preview
MQL5中的范畴论(第19部分):自然性四边形归纳法

MQL5中的范畴论(第19部分):自然性四边形归纳法

我们继续通过探讨自然性四边形归纳法来研究自然变换。对于使用MQL5向导构建的EA交易来说,对多货币实现的轻微限制意味着我们正在通过脚本展示我们的数据分类能力。所考虑的主要应用是价格变化分类及其预测。
preview
使用PatchTST机器学习算法预测未来24小时的价格走势

使用PatchTST机器学习算法预测未来24小时的价格走势

在本文中,我们将应用2023年发布的一种相对复杂的神经网络算法——PatchTST,来预测未来24小时的价格走势。我们将使用官方仓库的代码,并对其进行一些微小的修改,训练一个针对EURUSD(欧元兑美元)的模型,然后在Python和MQL5环境中应用该模型进行未来预测。
preview
DoEasy. 控件 (第 25 部分): Tooltip WinForms 对象

DoEasy. 控件 (第 25 部分): Tooltip WinForms 对象

在本文中,我将开始开发 Tooltip(工具提示)控件,以及函数库的新图形基元。 自然而然地,并非每个元素都有工具提示,但每个图形对象都有设置它的能力。