
重新审视一种旧时的趋势交易策略:两个随机振荡指标,一个移动平均指标和斐波那契线
旧时的交易策略本文介绍了一种纯技术型的趋势跟踪策略。该策略纯粹是技术性的,使用一些技术指标和工具来传递信号和目标。该策略的组成部分如下:一个周期数为14的随机振荡指标,一个周期数为5的随机振荡指标,一个周期数为200的移动平均指标,一个斐波那契投影工具(用于设定目标)。

数据科学和机器学习(第 13 部分):配合主成分分析(PCA)改善您的金融市场分析
运用主成分分析(PCA)彻底革新您的金融市场分析! 发现这种强大的技术如何解锁数据中隐藏的形态,揭示潜在的市场趋势,并优化您的投资策略。 在本文中,我们将探讨 PCA 如何为分析复杂的金融数据提供新的视角,揭示传统方法会错过的见解。 发掘 PCA 应用于金融市场数据如何为您带来竞争优势,并帮助您保持领先地位。

数据科学与机器学习(第 09 部分):以 MQL5 平铺直叙 K-均值聚类
数据挖掘在数据科学家和交易者看来至关重要,因为很多时候,数据并非如我们想象的那么简单。 人类的肉眼无法理解数据集中的不显眼底层形态和关系,也许 K-means 算法可以帮助我们解决这个问题。 我们来发掘一下...


DoEasy 函数库中的图形(第八十三部分):抽象标准图形对象类
在本文中,我将创建抽象图形对象类。 该对象用作创建标准图形对象类的基础。 图形对象拥有多种属性。 因此,在实际创建抽象图形对象类之前,我还需要做很多的准备工作。 这项工作包括在函数库的枚举中设置属性。

MQL5 简介(第 3 部分):掌握 MQL5 的核心元素
在这篇便于初学者阅读的文章中,我们将为您揭开数组、自定义函数、预处理器和事件处理的神秘面纱,并对所有内容进行清晰讲解,让您可以轻松理解每一行代码,从而探索 MQL5 编程的基础知识。加入我们,用一种独特的方法释放 MQL5 的力量,确保每一步都能理解。本文为掌握 MQL5 奠定了基础,强调了对每行代码的解释,并提供了独特而丰富的学习体验。

神经网络实验(第 3 部分):实际应用
在本系列文章中,我会采用实验和非标准方法来开发一个可盈利的交易系统,并检查神经网络是否对交易者有任何帮助。 若在交易中运用神经网络,MetaTrader 5 则可作为近乎自给自足的工具。

从头开始开发智能交易系统(第 24 部分):提供系统健壮性(I)
在本文中,我们将令系统更加可靠,来确保健壮和安全的使用。 实现所需健壮性的途径之一是尝试尽可能多地重用代码,从而能在不同情况下不断对其进行测试。 但这只是其中一种方式。 另一个是采用 OOP。

DoEasy. 控件 (第 2 部分): 操控 CPanel 类
在本文中,我将剔除一些与操控图形元素相关的错误,并继续开发 CPanel 控件。 尤其是,我将实现为所有面板文本对象设置默认字体参数的方法。

从头开始开发智能交易系统(第 13 部分):时序与交易(II)
今天,我们将针对市场分析构建《时序与交易》系统的第二部分。 在前一篇文章《时序与交易(I)》当中,我们讨论了一种替代的图表组织系统,该系统能够针对市场上执行的成交进行最快速的解释。

DoEasy 函数库中的时间序列(第五十四部分):抽象基准指标类的衍生
本文研究基于基准抽象指标衍生对象类的创建。 这些对象所提供功能,可访问创建的指标 EA,收集和获取各种指标和价格数据的数值统计信息。 同样,创建指标对象集合,从中可以访问程序中创建的每个指标的属性和数据。


DoEasy 函数库中的时间序列(第六十部分):品种即时报价数据的序列列表
在本文中,我将创建存储单一品种即时报价数据的列表,并在 EA 中检查其创建状态,以及检索所需数据。 每个所用品种各自的即时报价数据列表将来会构成即时报价数据集合。


DoEasy 库中的其他类(第六十七部分):图表对象类
在本文中,我将创建图表对象类(单个交易金融产品图表),并改进 MQL5 信号对象的集合类,以便在更新列表时也能为存储在集合中的每个信号对象更新其所有参数。

利用 MQL5 的交互式 GUI 改进您的交易图表(第 III 部分):简易可移动交易 GUI
加入我们的《利用 MQL5 的交互式 GUI 改进您的交易图表》系列的第 III 部分,我们将探索将交互式 GUI 集成到 MQL5 中的可移动交易仪表板之中。本文建立在第 I 部分和第 II 部分的基础上,指导读者将静态交易仪表板转换为动态、可移动的。

从头开始开发智能交易系统(第 16 部分):访问 web 上的数据(II)
掌握如何从网络向智能交易系统输入数据并非那么轻而易举。 如果不了解 MetaTrader 5 提供的所有可能性,就很难做到这一点。

神经网络变得轻松(第三十九部分):Go-Explore,一种不同的探索方式
我们继续在强化学习模型中研究环境。 在本文中,我们将见识到另一种算法 — Go-Explore,它允许您在模型训练阶段有效地探索环境。


DoEasy 函数库中的时间序列(第四十四部分):指标缓冲区对象类集合
本文介绍如何创建指标缓冲区对象类的集合。 我计划测试为指标创建和操控任意数量缓冲区的能力(在 MQL 指标中可以创建的最大缓冲区数量为 512)。

您应该知道的 MQL5 向导技术(第 06 部分):傅里叶(Fourier)变换
约瑟夫·傅里叶(Joseph Fourier)引入的傅里叶变换是将复杂的数据波分解构为简单分量波的一种方法。 此功能对交易者来说可能更机敏,本文将对此进行关注。


“MQL5 应用商店” 2013 年一季度业绩
自创立以来,销售自动交易与技术指标的“MQL5 应用商店”已经吸引来了 250 多位开发者,他们发布了 580 款产品。对于那些已通过销售自己的产品获得丰厚利润的“MQL5 应用商店”卖家来讲,2013 年第一季度是相当成功的。

数据科学与机器学习(第 02 部分):逻辑回归
数据分类对于算法交易者和程序员来说是至关重要的。 在本文中,我们将重点关注一种分类逻辑算法,它有帮于我们识别“确定或否定”、“上行或下行”、“做多或做空”。


MVC 设计范式及其应用(第 2 部分):三个组件之间相互作用示意图
本文是前一篇文章中所讨论主题的延续和完善:MQL 程序中的 MVC 范式。 在本文中,我们将研究范式的三个组件之间可能的相互作用的示意图。

来自专业程序员的提示(第三部分):日志。 连接到 Seq 日志收集和分析系统
Logger 类的实现能够统一和结构化打印到智能系统栏的日志消息。 连接到 Seq 日志收集和分析系统。 在线监视日志消息。


更好的程序员(第 06 部分):9 个导致有效编码的习惯
并非有关编写代码的所有事情总是导致有效编码。 在我的从业经历中,我发现了一些会导致有效编码的习惯。 我们将在本文中详细讨论其中的一些。 对于每一位想要以更少的麻烦来提高自己编写复杂算法的能力的程序员来说,这是一篇必须阅读的文章。

DoEasy 函数库中的时间序列(第五十部分):多周期、多品种带位移的标准指标
在文章里,我们将改进函数库的方法,以便正确显示多品种、多周期的标准指标,即那些在当前品种图表上显示曲线,并可在设置中指定位移的指标。 同样,我们按照标准指标的操纵方法进行排序,并在最终的指标程序里将多余的代码移至函数库区域。

以 MQL5 实现 ARIMA 训练算法
在本文中,我们将实现一种算法,该算法应用了 Box 和 Jenkins 的自回归集成移动平均模型,并采用了函数最小化的 Powells 方法。 Box 和 Jenkins 表示,大多数时间序列可以由两个框架中之一个或两个来建模。

MQL5 简介(第 2 部分):浏览预定义变量、通用函数和控制流语句
通过我们的 MQL5 系列第二部分,开启一段启迪心灵的旅程。这些文章不仅是教程,还是通往魔法世界的大门,在那里,编程新手和魔法师将团结在一起。是什么让这段旅程变得如此神奇?我们的 MQL5 系列第二部分以令人耳目一新的简洁性脱颖而出,使复杂的概念变得通俗易懂。与我们互动,我们会回答您的问题,确保您获得丰富和个性化的学习体验。让我们建立一个社区,让理解 MQL5 成为每个人的冒险。欢迎来到魔法世界!

DoEasy 函数库中的时间序列(第五十二部分):多周期、多品种单缓冲区标准指标的跨平台性质
在本文中,研究创建多品种、多周期标准指标的“建仓/派发”。 略微改进指标依托的函数库类,以便从老旧的 MetaTrader 4 平台切换到 MetaTrader 5 时,基于该函数库开发的程序均可正常运行。

时间序列的频域表示:功率谱
在本文中,我们将讨论在频域中分析时间序列的相关方法。 构建预测模型时,强调检验时间序列功率谱的效用 在本文中,我们将讨论运用离散傅里叶变换(dft)在频域中分析时间序列获得的一些实用观点。