Объединяем LLM, CatBoost и квантовые вычисления в единую торговую систему
В статье предлагается синтез новых технологий для преодоления ограничений классических индикаторов в аналитике рыночных данных. Показано, как языковые модели и квантовое кодирование могут выявлять скрытые рыночные паттерны, которые традиционные методики упускают. Эксперимент подтверждает ценность новых технологий и предлагает обновлённую методологию анализа, соответствующую современному уровню вычислительных инноваций.
Факторизация матриц: основы
Поскольку цель здесь дидактическая, мы будем действовать максимально просто. То есть мы будем реализовывать только то, что нам необходимо: умножение матриц. Вы сегодня увидите, что этого достаточно для симуляции умножения матрицы на скаляр. Самая существенная трудность, с которой многие сталкиваются при реализации кода с использованием матричной факторизации, заключается в следующем: в отличие от скалярной факторизации, где почти во всех случаях порядок факторов не меняет результат, при использовании матриц это не так.
Анализ почасового движения торговых символов и их спредов в MetaTrader 5
Индикатор индекса сезонности ProSpread со скользящим средним, как инструмент технического анализа, который выявляет сезонные закономерности ценового движения, анализирует поведение цены в определенные часы торговли, может работать как с одним инструментом, так и со спредом между двумя активами, а также визуализирует статистическую вероятность направленных движений.
Применение теории игр Нэша с фильтрацией НММ в трейдинге
Настоящая статья посвящена применению теории игр Джона Нэша, в частности теории равновесия Нэша, в трейдинге. В ней обсуждается, как трейдеры могут использовать скрипты Python и платформу MetaTrader 5 для выявления и использования неэффективности рынка спомощью принципов Нэша. В статье приводится пошаговое руководство по реализации этих стратегий, включая использование скрытых Марковских моделей (HMM) и статистического анализа, для повышения эффективности торговли.
Разработка системы репликации - Моделирование рынка (Часть 13): Появление СИМУЛЯТОРА (III)
Здесь мы немного упростим несколько элементов, связанных с работой в следующей статье. Я также объясню, как можно визуализировать то, что генерирует симулятор с точки зрения случайности.
Оптимизация африканскими буйволами — African Buffalo Optimization (ABO)
Статья посвящена алгоритму оптимизации африканскими буйволами (ABO), метаэвристическому подходу, разработанному в 2015 году на основе уникального поведения этих животных. В статье подробно описаны этапы реализации алгоритма и его эффективность в поиске решений сложных задач, что делает его ценным инструментом в области оптимизации.
Знакомство с языком MQL5 (Часть 16): Создание советников с использованием паттернов технического анализа
Эта статья знакомит новичков с созданием советника на языке MQL5, который выявляет классический паттерн технического анализа – "голову и плечи" – и торгует по нему. В статье рассматривается, как обнаружить паттерн, используя ценовое действие, нарисовать его на графике, установить уровни входа, стоп-лосса и тейк-профита, а также автоматизировать выполнение сделок на основе паттерна.
Связь торговых роботов MetaTrader 5 с внешними брокерами через API и Python
В настоящей статье мы обсудим реализацию MQL5 в партнерстве с Python для выполнения связанных с брокером операций. Представьте, что у вас есть постоянно работающий советник (EA), размещенный на VPS и совершающий сделки от вашего имени. В какой-то момент способность советника управлять средствами становится первостепенной. Она включает в себя такие операции, как пополнение вашего торгового счета и инициирование вывода средств. В данном обсуждении мы прольем свет на преимущества и практическую реализацию этих функций, обеспечивающих плавную интеграцию управления средствами в вашу торговую стратегию. Следите за обновлениями!
Квантовые вычисления и градиентный бустинг в торговле EUR/USD
Статья описывает практическую реализацию гибридной системы алгоритмического трейдинга, объединяющей квантовые вычисления (IBM Qiskit) и градиентный бустинг (CatBoost) для предсказания движения EUR/USD на часовом таймфрейме. Система извлекает четыре уникальных квантовых признака из вероятностного распределения по 256 состояниям через восемь кубитов, которые в комбинации с классическими индикаторами и дельта-кодированием временных категорий достигают точности 62% на 15,000 свечах.
Управление капиталом в трейдинге и программа домашней бухгалтерии трейдера с базой данных
Как трейдеру управлять капиталом? Как трейдеру и инвестору вести учет расходов, доходов, активов и пассивов? Я представлю вам не просто программу для учета, я покажу вам инструмент, который может стать вашим надежным финансовым навигатором в бурном море трейдинга.
Нейросети в трейдинге: Гибридные модели последовательностей графов (GSM++)
Гибридные модели последовательностей графов (GSM++) объединяют сильные стороны различных архитектур, обеспечивая высокую точность анализа данных и оптимизацию вычислительных затрат. Эти модели эффективно адаптируются к динамическим рыночным данным, улучшая представление и обработку финансовой информации.
Установка MetaTrader 5 и других приложений от MetaQuotes на HarmonyOS NEXT
Приложения от MetaQuotes, включая платформы MetaTrader 5 и MetaTrader 4, можно установить на устройства с операционной системой HarmonyOS NEXT с помощью компонента DroiTong. В статье представлено пошаговое руководство для установки программ на телефон или ноутбук.
Разработка системы репликации (Часть 33): Система ордеров (II)
Сегодня мы продолжим разработку системы ордеров, но вы увидите, что мы будем массово использовать заново то, что уже было показано в других статьях. Тем не менее, в этой статье мы получим небольшое вознаграждение. Сначала мы разработаем систему, которую можно будет использовать вместе с реальным торговым сервером, либо с помощью демо-счета, либо реального счета. Мы будем широко использовать платформу MetaTrader 5, которая обеспечит нам всю необходимую поддержку в начале данного пути.
Популяционные алгоритмы оптимизации: Искусственные мультисоциальные поисковые объекты (artificial Multi-Social search Objects, MSO)
Продолжение предыдущей статьи как развитие идеи социальных групп. В новой статье исследуется эволюция социальных групп с использованием алгоритмов перемещения и памяти. Результаты помогут понять эволюцию социальных систем и применить их в оптимизации и поиске решений.
Визуальная оценка и корректировка торговли в MetaTrader 5
В тестере стратегий можно не только оптимизировать параметры торгового робота. Мы покажем, как оценить постфактум проторгованную историю своего счёта и внести корректировки в торговлю в тестере, изменяя размеры стоп-приказов открываемых позиций.
Нейросети в трейдинге: Адаптивное обнаружение рыночных аномалий (DADA)
Предлагаем познакомиться с фреймворком DADA — инновационным методом выявления аномалий во временных рядах. Он помогает отличить случайные колебания от подозрительных отклонений. В отличие от традиционных методов, DADA гибко подстраивается под разные данные. Вместо фиксированного уровня сжатия он использует несколько вариантов и выбирает наиболее подходящий для каждого случая.
Возможности Мастера MQL5, которые вам нужно знать (Часть 38): Полосы Боллинджера
Полосы Боллинджера — очень распространенный индикатор конвертов, используемый многими трейдерами для ручного размещения и закрытия сделок. Мы изучим этот индикатор, рассмотрев как можно больше различных сигналов, которые он генерирует, и посмотрим, как их можно использовать в советнике, собранном с помощью Мастера.
Нейросети в трейдинге: Адаптивное обнаружение рыночных аномалий (DADA)
Предлагаем познакомиться с фреймворком DADA — инновационным методом выявления аномалий во временных рядах. Он помогает отличить случайные колебания от подозрительных отклонений. В отличие от традиционных методов, DADA гибко подстраивается под разные данные. Вместо фиксированного уровня сжатия он использует несколько вариантов и выбирает наиболее подходящий для каждого случая.
Как опередить любой рынок (Часть V): Альтернативные данные FRED EURUSD
В статье использованы альтернативные ежедневные данные Федерального резервного банка Сент-Луиса по обобщенному индексу доллара США и набор других макроэкономических показателей для прогнозирования будущего обменного курса EURUSD. К сожалению, хотя данные, по-видимому, имеют почти идеальную корреляцию, нам не удалось получить никаких существенных преимуществ в точности нашей модели, что, наводит нас на мысль, что инвесторам, возможно, лучше использовать обычные рыночные котировки.
Применение ассоциативных правил для анализа данных на Форексе
Как применить предиктивные правила ретейл-аналитики супермаркетов к реальному рынку Форекс? Как связаны покупки печенья, молока и хлеба с транзакциями на бирже? В статье рассматривается инновационный подход к алгоритмическому трейдингу, основанный на применении ассоциативных правил.
Методы дискретизации ценовых движений на Python
Мы рассмотрим методы дискретизации цен на Python + MQL5. В этой статье я поделюсь практическим опытом разработки библиотеки на Python, которая реализует целый спектр подходов к формированию баров — от классических Volume и Range bars до более экзотических методов вроде Renko и Kagi.ары, свечи трехлинейного прорыва, рэйндж бары — какова их статистика, как еще можно представить цены дискретно?
Нейросети в трейдинге: Контекстно-зависимое обучение, дополненное памятью (MacroHFT)
Предлагаю познакомиться с фреймворком MacroHFT, который применяет контекстно зависимое обучение с подкреплением и память, для улучшения решений в высокочастотной торговле криптовалютами, используя макроэкономические данные и адаптивные агенты.
Алгоритм дуэлянта — Duelist Algorithm
Что если бы ваши торговые стратегии могли учиться друг у друга, как настоящие бойцы? Duelist Algorithm — новый метод оптимизации, где параметры торговых систем буквально сражаются в дуэлях за право называться лучшими.
Отбор признаков и снижение размерности с помощью анализа главных компонент (PCA)
В статье рассматривается реализация модифицированного алгоритма анализа компонентов прямого отбора, вдохновленного исследованиями, представленными в книге Луки Пуггини (Luca Puggini) и Шона Маклуна (Sean McLoone) “Анализ компонентов прямого отбора: алгоритмы и приложения”.
Нейросети в трейдинге: Актер—Режиссёр—Критик (Actor—Director—Critic)
Предлагаем познакомиться с фреймворком Actor-Director-Critic, который сочетает в себе иерархическое обучение и многокомпонентную архитектуру для создания адаптивных торговых стратегий. В этой статье мы подробно рассмотрим, как использование Режиссера для классификации действий Актера помогает эффективно оптимизировать торговые решения и повышать устойчивость моделей в условиях финансовых рынков.
Применение Grey-модели в техническом анализе финансовых временных рядов
Данная статья посвящена изучению grey-модели — перспективного инструмента, способного расширить возможности трейдера. Мы рассмотрим некоторые варианты применения этой модели для технического анализа и построения торговых стратегий.
Переосмысливаем классические стратегии (Часть II): Пробои индикатора Bollinger Bands
В статье рассматривается торговая стратегия, объединяющая линейный дискриминантный анализ (Linear Discriminant Analysis, LDA) с полосами Боллинджера с использованием прогнозов категориальных зон для стратегических сигналов входа в рынок.
Разрабатываем мультивалютный советник (Часть 24): Подключаем новую стратегию (I)
В данной статье рассмотрим как нам подключить новую стратегию к созданной системе автоматической оптимизации. Посмотрим, какие советники нам понадобится создать и можно ли будет обойтись без изменений файлов библиотеки Advisor или свести необходимые изменения к минимуму.
Разработка системы репликации (Часть 34): Система ордеров (III)
В этой статье мы завершим первый этап конструкции. Несмотря на то, что это выполняется довольно быстро, я расскажу о деталях, которые не обсуждались ранее. Но здесь я объясню некоторые моменты, которые многие не понимают. Например, знаете ли вы, почему вам приходится нажимать клавишу Shift или Ctrl на клавиатуре?
Расширенные переменные и типы данных в MQL5
Переменные и типы данных — очень важные темы не только в программировании на MQL5, но и в любом языке программирования. Переменные и типы данных MQL5 можно разделить на простые и расширенные. Здесь мы рассмотрим расширенные переменные и типы данных. Простые мы изучали в предыдущей статье.
Возможности Мастера MQL5, которые вам нужно знать (Часть 17): Мультивалютная торговля
По умолчанию торговля несколькими валютами недоступна при сборке советника с помощью Мастера. Мы рассмотрим два возможных приема, к которым могут прибегнуть трейдеры, желающие проверить свои идеи на нескольких символах одновременно.
Алгоритм искусственных водорослей — Artificial Algae Algorithm (AAA)
В данной статье рассматривается алгоритм искусственных водорослей (AAA), разработанный на основе биологических процессов, характерных для микроводорослей. Алгоритм включает спиральное движение, эволюционный процесс и адаптацию, что позволяет ему решать задачи оптимизации. Статья предлагает глубокий анализ принципов работы AAA и его потенциала в математическом моделировании, подчеркивая связь между природой и алгоритмическими решениями.
Единый мультитаймфреймовый Ренко: Синтез временных измерений рынка
Статья представляет инновационную концепцию мультитаймфреймового Ренко-графика, который объединяет сигналы с четырёх временных масштабов (M5, M15, H1, H4) в единый синтетический инструмент. Система создаёт виртуальный символ в MetaTrader 5, используя EMA каждого таймфрейма для формирования композитного сигнала через три метода: простое среднее, взвешенное среднее и консенсус. Реализация включает адаптивный размер кирпича на основе ATR, работу в реальном времени и полную интеграцию с MetaTrader 5.
Нейронная сеть на практике: Псевдообратная (II)
Поскольку эти статьи имеют образовательную цель и не направлены на то, чтобы показать реализацию конкретной функциональности, в данной статье мы поступим немного иначе. Вместо того, чтобы показывать, как применять факторизацию для получения обратной матрицы, мы сосредоточимся на факторизации псевдообратной. Причина заключается в том, что нет смысла показывать, как можно получить общий коэффициент, если мы можем сделать это особым способом. А еще лучше, если читатель сможет глубже понять, почему всё происходит именно так. Давайте теперь разберемся, почему со временем аппаратное обеспечение приходит на смену программному.
Математические модели в сеточных стратегиях
В этой статье мы рассмотрим применение математики к сеточным стратегиям. Мы разберем основные принципы работы стратегии, её преимущества и недостатки. Вы узнаете, как построить торговую сетку, задавать оптимальные параметры и эффективно управлять рисками.
Разработка системы репликации (Часть 35): Внесение корректировок (I)
Прежде чем мы сможем двигаться дальше, нам нужно исправить несколько моментов. Но это не обязательные исправления, а улучшение в способе управления и использования класса. Причина в том, что сбои происходят из-за какого-то взаимодействия внутри системы. Несмотря на попытки узнать причину некоторых неудач, для их последующего устранения, все эти попытки оказались безуспешными, поскольку некоторые из них не имели смысла. Когда мы используем указатели или рекурсию в C / C++, программа аварийно завершается.
Самооптимизирующийся советник на языках MQL5 и Python (Часть V): Глубокие марковские модели
Мы применим простую цепь Маркова к индикатору RSI, чтобы наблюдать за поведением цены после того, как индикатор проходит через ключевые уровни. Мы пришли к выводу, что самые сильные сигналы на покупку и продажу по паре NZDJPY генерируются, когда RSI находится в диапазоне 11–20 и 71–80 соответственно. Мы покажем, как можно манипулировать данными, чтобы создавать оптимальные торговые стратегии, основанные непосредственно на имеющихся данных. Кроме того, мы продемонстрируем, как обучить глубокую нейронную сеть оптимальному использованию матрицы перехода.
Как создать торговый журнал с помощью MetaTrader и Google Sheets
Создайте торговый журнал с помощью MetaTrader и Google Sheets! Вы узнаете, как синхронизировать свои торговые данные с помощью HTTP POST и извлекать их с помощью HTTP-запросов. Наконец, у вас будет торговый журнал, который поможет эффективно отслеживать ваши сделки.
Возможности Мастера MQL5, которые вам нужно знать (Часть 18): Поиск нейронной архитектуры с использованием собственных векторов
Поиск нейронной архитектуры (Neural Architecture Search), автоматизированный подход к определению идеальных настроек нейронной сети, может стать преимуществом при наличии большого количества вариантов и больших наборов тестовых данных. Здесь мы рассмотрим, как этот подход можно сделать еще более эффективным с помощью парных собственных векторов (Eigen Vectors).
Нейросети в трейдинге: Эффективное извлечение признаков для точной классификации (Построение объектов)
Mantis — универсальный инструмент для глубокого анализа временных рядов, гибко масштабируемый под любые финансовые сценарии. Узнайте, как сочетание патчинга, локальных свёрток и кросс-внимания позволяет получить высокоточную интерпретацию рыночных паттернов.