Машинное обучение и Data Science (Часть 29): Как отбирать лучшие форекс-данные для обучения ИИ
В этой статье мы подробно рассмотрим важные аспекты при выборе наиболее релевантных и качественных данных с рынка Forex для повышения производительности моделей искусственного интеллекта.
Нейросети в трейдинге: Гиперболическая модель латентной диффузии (Окончание)
Применение анизотропных диффузионных процессов для кодирования исходных данных в гиперболическом латентном пространстве, как это предложено в фреймворке HypDIff, способствует сохранению топологических особенностей текущей рыночной ситуации, и повышает качество её анализа. В предыдущей статье мы начали реализацию предложенных подходов средствами MQL5. И сегодня продолжим начатую работу, доведя ее до логического завершения.
Шаблоны проектирования в программировании на MQL5 (Часть 3): Поведенческие шаблоны 1
В новая статье серии, посвященной шаблонам проектирования, мы рассмотрим поведенческие шаблоны, чтобы понять, как эффективно создавать методы взаимодействия между созданными объектами. Спроектировав эти шаблоны поведения, мы сможем понять, как создавать многоразовое, расширяемое и тестируемое программное обеспечение.
Объединение стратегий фундаментального и технического анализа на языке MQL5 для начинающих
В этой статье обсудим, как эффективно интегрировать следование тренду и фундаментальные принципы в один советник для создания более надежной стратегии. Статья продемонстрирует, насколько просто любой желающий может приступить к созданию собственных торговых алгоритмов с помощью языка MQL5.
Нейросети в трейдинге: Мультимодальный агент, дополненный инструментами (Окончание)
Продолжаем работу по реализации алгоритмов мультимодального агента для финансовой торговли FinAgent, предназначенного для анализа мультимодальных данных рыночной динамики и исторических торговых паттернов.
DoEasy. Элементы управления (Часть 6): Элемент управления "Панель", автоизменение размеров контейнера под внутреннее содержимое
В статье продолжим работу над WinForms-объектом "Панель" и реализуем автоизменение его размеров под общие размеры Dock-объектов, расположенных внутри панели. Кроме того добавим новые свойства в объект библиотеки "Символ".
Разработка системы репликации - Моделирование рынка (Часть 15): Появление СИМУЛЯТОРА (V) - СЛУЧАЙНОЕ БЛУЖДАНИЕ
В этой статье мы завершим разработку симулятора для нашей системы. Основной целью здесь будет настройка алгоритма, рассмотренного в предыдущей статье. Этот алгоритм направлен на создание движения СЛУЧАЙНОГО БЛУЖДАНИЯ. Поэтому, для понимания сегодняшнего материала, необходимо понять содержание предыдущих статей. Если вы не следили за развитием симулятора, советую посмотреть эту последовательность с самого начала. В противном случае вы можете запутаться в том, что будет здесь объяснено.
Популяционные алгоритмы оптимизации: Устойчивость к застреванию в локальных экстремумах (Часть I)
Эта статья представляет уникальный эксперимент, цель которого - исследовать поведение популяционных алгоритмов оптимизации в контексте их способности эффективно покидать локальные минимумы при низком разнообразии в популяции и достигать глобальных максимумов. Работа в этом направлении позволит глубже понять, какие конкретные алгоритмы могут успешно продолжать поиск из координат, установленных пользователем в качестве отправной точки, и какие факторы влияют на их успешность в этом процессе.
Подробная информация о торговле на основе объема: Подтверждение тренда
Усовершенствованный метод подтверждения тренда сочетает в себе ценовое движение, анализ объема и машинное обучение для выявления подлинных изменений на рынке. Для подтверждения сделки требуются как ценовые пробои, так и скачки объема (на 50% выше среднего), а для дополнительного подтверждения используется нейронная сеть LSTM. Система использует определение размера позиции на основе ATR и динамическое управление рисками, что позволяет ей адаптироваться к различным рыночным условиям и одновременно отфильтровывать ложные сигналы.
Теория категорий в MQL5 (Часть 7): Мульти-, относительные и индексированные домены
Теория категорий представляет собой разнообразный и расширяющийся раздел математики, который лишь недавно начал освещаться в MQL5-сообществе. Эта серия статей призвана рассмотреть некоторые из ее концепций для создания открытой библиотеки и дальнейшему использованию этого замечательного раздела в создании торговых стратегий.
Эволюционный торговый алгоритм обучения с подкреплением и вымиранием убыточных особей (ETARE)
Представляем инновационный торговый алгоритм, сочетающий эволюционные алгоритмы с глубоким обучением с подкреплением для торговли на Форекс. Алгоритм использует механизм вымирания неэффективных особей, для оптимизации торговой стратегии.
Разрабатываем мультивалютный советник (Часть 28): Добавляем менеджер закрытия позиций
При параллельной работе многих стратегий может возникнуть желание время от времени закрывать все открытые позиции и начинать работу стратегий заново. Уже написанный код позволяет реализовать такое поведение только вместе с ручными манипуляциями. Попробуем автоматизировать эту часть.
Разработка системы репликации - Моделирование рынка (Часть 17): Тики и еще больше тиков (I)
Здесь мы увидим, как реализовать что-то действительно интересное, но в то же время очень сложное из-за отдельных моментов, которые многих смущают. И самое худшее, что может случиться - это то, что некоторые трейдеры, считающие себя профессионалами, ничего не знают о важности этих понятий на рынке капитала. Да, хотя основное внимание здесь уделяется программированию, но понимание некоторых вопросов, связанных с торговлей на рынках, имеет первостепенное значение для того, что мы собираемся здесь реализовать.
Теория категорий в MQL5 (Часть 13): События календаря со схемами баз данных
В статье рассматривается, как схемы баз данных могут быть включены для классификации в MQL5. Мы кратко рассмотрим, как концепции схемы базы данных могут сочетаться с теорией категорий при идентификации текстовой (строковой) информации, имеющей отношение к торговле. В центре внимания будут находиться события календаря.
Нейросети в трейдинге: Повышение эффективности Transformer путем снижения резкости (Окончание)
SAMformer предлагает решение ключевых проблем Transformer в долгосрочном прогнозировании временных рядов, включая сложность обучения и слабое обобщение на малых выборках. Его неглубокая архитектура и оптимизация с учетом резкости обеспечивают избегание плохих локальных минимумов. В данной статье мы продолжим реализацию подходов с использованием MQL5 и оценим их практическую ценность.
Торговый инструментарий MQL5 (Часть 2): Расширение и применение EX5-библиотеки для управления позициями
Узнайте, как импортировать и использовать EX5-библиотеки в вашем коде или проектах MQL5. В этой статье мы расширим ранее созданную EX5-библиотеку, добавив больше функций управления позициями и создав два советника. В первом примере будет использоваться технический индикатор Variable Index Dynamic Average для разработки советника по стратегии трейлинг-стопа, а во втором - торговая панель для мониторинга, открытия, закрытия и изменения позиций. Эти два примера продемонстрируют, как использовать обновленную EX5-библиотеку для управления позициями.
Переосмысливаем классические стратегии (Часть 12): Стратегия пробоев на паре EURUSD
Присоединяйтесь к нам сегодня, поскольку мы ставим перед собой задачу разработать прибыльную торговую стратегию пробоев на MQL5. Мы выбрали пару EURUSD и попытались торговать на ценовых пробоях на часовом таймфрейме. Нашей системе было трудно отличить ложные пробои от начала истинных трендов. Мы снабдили нашу систему фильтрами, предназначенными для минимизации потерь и увеличения прибыли. В конце концов, мы успешно сделали нашу систему прибыльной и менее подверженной ложным пробоям.
Добавляем пользовательскую LLM в торгового робота (Часть 5): Разработка и тестирование торговой стратегии с помощью LLM (I) - Тонкая настройка
Языковые модели (LLM) являются важной частью быстро развивающегося искусственного интеллекта, поэтому нам следует подумать о том, как интегрировать мощные LLM в нашу алгоритмическую торговлю. Большинству людей сложно настроить эти модели в соответствии со своими потребностями, развернуть их локально, а затем применить к алгоритмической торговле. В этой серии статей будет рассмотрен пошаговый подход к достижению этой цели.
Разработка системы репликации - Моделирование рынка (Часть 19): Необходимые корректировки
Здесь мы подготовим почву для того, чтобы при необходимости добавления новых функций в код это происходило плавно и легко. Текущий код пока не может охватывать или обрабатывать некоторые моменты, которые будут необходимы для значимого прогресса. Нам нужно, чтобы всё было построено так, чтобы усилия по реализации некоторых вещей были минимальными. Если сделаем всё правильно, мы сможем получить действительно универсальную систему, способную очень легко адаптироваться к любой ситуации, которую необходимо охватить.
Нейронная сеть на практике: Функция прямой линии
В этой статье мы бегло просмотрим некоторые методы получения функции, которая может представлять наши данные в базе данных. Я не буду подробно останавливаться на том, как использовать статистику и исследования вероятностей для интерпретации результатов. Оставим это для тех, кто действительно хочет углубиться в математическую сторону вопроса. Тем не менее, изучение этих вопросов будет иметь решающее значение для понимания того, что связано с изучением нейронных сетей. Здесь мы довольно спокойно рассмотрим этот вопрос.
Решение проблем интеграции ONNX
ONNX — отличный инструмент для интеграции сложного ИИ-кода на разных платформах. Однако при его использовании возникают некоторые сложности, которые необходимо преодолеть, чтобы извлечь из него максимальную пользу. В этой статье мы обсудим распространенные проблемы, с которыми вы можете столкнуться, и способы их устранения.
Торговая стратегия SP500 на языке MQL5 для начинающих
Узнайте, как использовать язык MQL5 для точного прогнозирования индекса S&P 500, добавляя классический технический анализ для обеспечения стабильности и объединяя алгоритмы с проверенными временем принципы для получения надежной информации о рынке.
Нейросети — это просто (Часть 94): Оптимизация последовательности исходных данных
При работе с временными рядами мы всегда используем исходные данные в их исторической последовательности. Но является ли это оптимальным вариантом? Существует мнение, что изменение последовательности исходных данных позволит повысить эффективность обучаемых моделей. В данной статье я предлагаю вам познакомиться с одним из таких методов.
Разработка системы репликации - Моделирование рынка (Часть 06): Первые улучшения (I)
В этой статье мы приступим к стабилизации всей системы, иначе мы рискуем не выполнить следующие шаги.
Возможности Мастера MQL5, которые вам нужно знать (Часть 08): Перцептроны
Перцептроны, сети с одним скрытым слоем, могут стать хорошим подспорьем для тех, кто знаком с основами автоматической торговли и хочет окунуться в нейронные сети. Мы шаг за шагом рассмотрим, как их можно реализовать в сборке классов сигналов, которая является частью классов Мастера MQL5 для советников.
Алгоритм искусственного электрического поля — Artificial Electric Field Algorithm (AEFA)
Статья представляет алгоритм искусственного электрического поля (AEFA), вдохновленный законом Кулона об электростатической силе. Алгоритм моделирует электрические явления для решения сложных задач оптимизации, используя заряженные частицы и их взаимодействие. AEFA демонстрирует уникальные свойства в контексте других алгоритмов, связанных с законами природы.
Машинное обучение и Data Science (Часть 32): Как поддерживать актуальность AI-моделей с онлайн-обучением
В постоянно меняющемся мире трейдинга адаптация к изменениям на рынке — это просто необходимость. Каждый день появляются новые закономерности и тенденции, из-за чего даже самым продвинутым моделям машинного обучения становится сложно оставаться эффективными в меняющихся условиях. В этой статье мы поговорим о том, как поддерживать актуальность моделей и их способность реагировать на новые рыночные данные с помощью автоматического дообучения.
От новичка до эксперта: Раскрываем скрытые уровни коррекции Фибоначчи
В настоящей статье мы рассмотрим основанный на данных подход к обнаружению и проверке нестандартных уровней коррекции Фибоначчи, которые могут учитываться рынками. Мы представляем полный рабочий процесс, адаптированный для реализации на MQL5, начиная со сбора данных и определения баров или колебаний и заканчивая кластеризацией, проверкой статистических гипотез, бэктестингом и интеграцией в инструмент Фибоначчи на MetaTrader 5. Цель состоит в том, чтобы создать воспроизводимый конвейер, преобразующий отдельные наблюдения в статистически обоснованные торговые сигналы.
Обучаем нейросети на осцилляторах без подглядывания в будущее
В статье описывается подход к разметке сделок с помощью осцилляторов для моделей машинного обучения. Это позволяет избавиться от look ahead bias. Показано, что такая разметка не приводит к переобучению моделей, а стратегии продолжают работать продолжительное время.
Разработка системы репликации (Часть 41): Начало второй фазы (II)
Если до этого момента вам всё казалось правильным, это значит, что вы на самом деле не задумываетесь о долгосрочной перспективе. Когда вы начинаете разрабатывать приложения, а со временем вам больше не приходится создавать новые приложения. Остается только добиться того, чтобы они работали вместе. Давайте рассмотрим, как завершить сборку указателя мыши.
DoEasy. Элементы управления (Часть 33): вертикальный "ScrollBar"
В статье продолжим разработку графических элементов библиотеки DoEasy, и добавим вертикальную прокрутку элементов управления объекта-формы и некоторые полезные функции и методы, которые потребуются в дальнейшем.
Самооптимизирующийся советник на языках MQL5 и Python (Часть III): Реализация алгоритма Boom 1000
В этой серии статей мы обсуждаем создание советников, способных автономно подстраиваться под динамичные рыночные условия. В сегодняшней статье мы попытаемся настроить глубокую нейронную сеть для синтетических рынков Deriv.
Графический интерфейс: советы и рекомендации по созданию графической библиотеки на MQL
Мы рассмотрим основы библиотек графического интерфейса, чтобы вы могли понять, как они работают, или даже начали создавать свои собственные.
Возможности Мастера MQL5, которые вам нужно знать (Часть 12): Полином Ньютона
Полином Ньютона, который создает квадратные уравнения из набора нескольких точек, представляет собой архаичный, но интересный подход к рассмотрению временных рядов. В этой статье мы попытаемся изучить, какие аспекты этого подхода могут быть полезны трейдерам, а также устранить его ограничения.
Алгоритм черной дыры — Black Hole Algorithm (BHA)
Алгоритм черной дыры (Black Hole Algorithm, BHA) использует принципы гравитации черных дыр для оптимизации решений. В статье мы рассмотрим, как BHA притягивает лучшие решения, избегая локальных экстремумов, и почему этот алгоритм стал мощным инструментом для решения сложных задач. Узнайте, как простые идеи могут привести к впечатляющим результатам в мире оптимизации.
Построение модели для ограничения диапазона сигналов по тренду (Часть 9): Советник с несколькими стратегиями (II)
Количество стратегий, которые можно интегрировать в виде советника, практически безгранично. Однако каждая дополнительная стратегия увеличивает сложность алгоритма. Благодаря использованию нескольких стратегий советник может лучше адаптироваться к изменяющимся рыночным условиям, что потенциально повышает его прибыльность. Сегодня мы рассмотрим, как реализовать в MQL5 одну из выдающихся стратегий, разработанных Ричардом Дончианом, продолжая при этом совершенствовать функциональность нашего советника Trend Constraint.
Теория категорий в MQL5 (Часть 12): Порядок
Статья является частью серии о реализации графов средствами теории категорий в MQL5 и посвящена отношению порядка (Order Theory). Мы рассмотрим два основных типа упорядочения и исследуем, как концепции отношения порядка могут поддерживать моноидные множества при принятии торговых решений.
Возможности Мастера MQL5, которые вам нужно знать (Часть 11): Числовые стены
Числовые стены (Number Walls) — это вариант регистра сдвига с линейной обратной связью (Linear Shift Back Registers), который предварительно оценивает последовательности на предмет предсказуемости путем проверки на сходимость. Мы посмотрим, как эти идеи могут быть использованы в MQL5.
Разработка системы репликации (Часть 50): Все усложняется (II)
Мы решим проблему ID графиков, но в то же время начнем обеспечивать пользователю возможность использования личного шаблона, ориентированного на анализ того актива, который он хочет изучить и смоделировать. Представленные здесь материалы носят исключительно дидактический характер, ни в коем случае нельзя рассматривать их как приложение с никакой иной целью, кроме изучения и освоения представленных концепций.
Оцениваем будущую производительность с помощью доверительных интервалов
В этой статье мы углубимся в применение методов бутстреппинга (bootstrapping) как средства оценки будущей эффективности автоматизированной стратегии.