Статьи по программированию на языке MQL5

icon

Изучайте язык программирования торговых стратегий MQL5 по опубликованным здесь статьям, большая часть которых написана вами - членами сообщества. Все статьи разделены на категории для быстрого поиска ответа по тому или иному аспекту программирования: "Интеграция", "Тестер", "Торговые стратегии" и многое другое.

Следите за новыми публикациями и участвуйте в их обсуждении на форуме!

Новая статья
последние | лучшие
preview
Разработка MQTT-клиента для MetaTrader 5: методология TDD (финал)

Разработка MQTT-клиента для MetaTrader 5: методология TDD (финал)

Статья является последней частью серии, описывающей этапы разработки нативного MQL5-клиента для протокола MQTT 5.0. Хотя библиотека еще не готова к использованию, в этой части мы будем использовать наш клиент для обновления пользовательского символа с помощью тиков (или цен), полученных от другого брокера. В конце статьи вы найдете дополнительную информацию о текущем состоянии библиотеки и узнаете о том, чего не хватает для ее полного соответствия протоколу MQTT 5.0, о возможном плане действий и о том, как следить за развитием библиотеки и вносить в нее свой вклад.
preview
От новичка к эксперту: Главное на пути к торговле на MQL5

От новичка к эксперту: Главное на пути к торговле на MQL5

Раскройте свой потенциал! Вас окружают возможности. Узнайте 3 главных секрета, с помощью которых вы начнете изучать MQL5 или перейдете на новый уровень владения этим языком. Погрузимся в обсуждение советов и рекомендаций, в равной степени полезных и начинающим, и профи.
preview
Введение в MQL5 (Часть 10): Руководство по работе со встроенными индикаторами в MQL5 для начинающих

Введение в MQL5 (Часть 10): Руководство по работе со встроенными индикаторами в MQL5 для начинающих

В этой статье описывается работа со встроенными индикаторами в MQL5, отдельное внимание уделяется созданию советника на основе индикатора RSI с использованием проектного подхода. Вы научитесь получать и использовать значения RSI, обрабатывать колебания ликвидности и улучшать визуализацию торговли с помощью графических объектов. Кроме того, в статье рассматривается еще один важный аспект. Сюда относится риск в процентах от депозита, соотношение риска и доходности, а также модификация риска на ходу для защиты прибыли.
preview
Знакомство с языком MQL5 (Часть 18): Введение в паттерн "Волны Вульфа"

Знакомство с языком MQL5 (Часть 18): Введение в паттерн "Волны Вульфа"

В этой статье подробно объясняется паттерн волн Вульфа – как медвежьи, так и бычьи его вариации. В статье также проводится пошаговый разбор логики, используемой для выявления действительных сетапов на покупку и продажу на основе этого продвинутого графического паттерна.
preview
Осваиваем JSON: Разработка пользовательского JSON-ридера с нуля на MQL5

Осваиваем JSON: Разработка пользовательского JSON-ридера с нуля на MQL5

В статье приведено пошаговое руководство по созданию пользовательского парсера JSON на языке MQL5, включающего обработку объектов и массивов, проверку ошибок и сериализацию. Вы сможет объединить торговую логику и структурированные данные с помощью гибкого решения для обработки JSON в MetaTrader 5.
preview
Разработка инструментария для анализа движения цен (Часть 17): Советник TrendLoom

Разработка инструментария для анализа движения цен (Часть 17): Советник TrendLoom

Как ценовой аналитик и трейдер, я заметил, что когда тренд подтверждается на нескольких таймфреймах, он обычно продолжается в этом направлении. Продолжительность тренда может варьироваться в зависимости от стратегии трейдера: держит ли он позиции на долгосрочную перспективу или занимается скальпингом. Выбранные вами таймфреймы играют решающую роль. Статья знакомит с быстрой автоматизированной системой, которая помогает увидеть общий тренд сквозь разные тймфреймы всего одним нажатием кнопки или с помощью регулярных обновлений.
preview
Разработка системы репликации (Часть 43): Проект Chart Trade (II)

Разработка системы репликации (Часть 43): Проект Chart Trade (II)

Большинство людей, которые хотят или мечтают научиться программировать, на самом деле не имеют представления о том, что делают. Их деятельность заключается в попытках создавать вещи определенным образом. Однако программирование – это вовсе не подгонка под ответ подходящих решений. Если действовать таким образом, можно создать больше проблем, чем решений. Здесь мы будем делать нечто более продвинутое и, следовательно, другое.
preview
Изучение передовых методов машинного обучения в стратегии пробоя «коридора Дарваса» (Darvas Box Breakout)

Изучение передовых методов машинного обучения в стратегии пробоя «коридора Дарваса» (Darvas Box Breakout)

Стратегия Darvas Box Breakout, созданная Николасом Дарвасом, представляет собой подход в технической торговле, который выявляет потенциальные сигналы на покупку, когда цена акций поднимается выше установленного диапазона «коридора», что указывает на сильный восходящий импульс. В этой статье мы применим эту стратегическую концепцию в качестве примера для изучения трех передовых методов машинного обучения. К ним относятся использование модели машинного обучения для генерации сигналов вместо фильтрации сделок, применение непрерывных сигналов вместо дискретных и использование для подтверждения сделок моделей, обученных на разных таймфреймах.
preview
Форекс советник на нейросети N-BEATS Network

Форекс советник на нейросети N-BEATS Network

Реализация архитектуры N-BEATS для форекс-трейдинга в MetaTrader 5 с квантильным прогнозированием и адаптивным риск-менеджментом. Архитектура адаптирована через билинейную нормализацию и специализированные функции потерь для финансовых данных. Тестирование на данных 2025 года показало неспособность генерировать прибыль, подтверждая разрыв между теоретическими достижениями и практической торговой эффективностью.
preview
Нейросети в трейдинге: Мультизадачное обучение на основе модели ResNeXt (Окончание)

Нейросети в трейдинге: Мультизадачное обучение на основе модели ResNeXt (Окончание)

Продолжаем изучение фреймворка мультизадачного обучения на основе ResNeXt, который отличается модульностью, высокой вычислительной эффективностью и способностью выявлять устойчивые паттерны в данных. Использование единого энкодера и специализированных "голов" снижает риск переобучения модели и повышает качество прогнозов.
preview
Построение модели для ограничения диапазона сигналов по тренду (Часть 10): Золотой крест и крест смерти

Построение модели для ограничения диапазона сигналов по тренду (Часть 10): Золотой крест и крест смерти

Знаете ли вы, что стратегии "Золотой крест" (Golden Cross) и "Крест смерти" (Death Cross), основанные на пересечении скользящих средних, являются одними из самых надежных индикаторов для определения долгосрочных рыночных трендов? "Золотой крест" сигнализирует о бычьем тренде, когда более короткая скользящая средняя пересекает более длинную снизу вверх, в то время как "крест смерти" указывает на медвежий тренд, когда короткая скользящая средняя опускается ниже длинной. Несмотря на их простоту и эффективность, ручное применение этих стратегий часто приводит к упущенным возможностям или задержке сделок.
preview
Разрабатываем мультивалютный советник (Часть 26): Информер для торговых инструментов

Разрабатываем мультивалютный советник (Часть 26): Информер для торговых инструментов

Прежде, чем двигаться дальше в разработке мультивалютных советников, попробуем переключиться на создание нового проекта, использующего разработанную библиотеку. На этом примере выявим, как лучше организовать хранение исходного кода, и как нам может помочь использование нового репозитория кода от MetaQuotes.
preview
Нейросети в трейдинге: Иерархический векторный Transformer (Окончание)

Нейросети в трейдинге: Иерархический векторный Transformer (Окончание)

Продолжаем изучение метода Иерархического Векторного Transformer. И в данной статье мы завершим построение модели. А также проведем её обучение и тестирование на реальных исторических данных.
preview
Нейросети в трейдинге: Актер—Режиссёр—Критик (Окончание)

Нейросети в трейдинге: Актер—Режиссёр—Критик (Окончание)

Фреймворк Actor–Director–Critic — это эволюция классической архитектуры агентного обучения. В статье представлен практический опыт его реализации и адаптации к условиям финансовых рынков.
preview
Нейросети в трейдинге: Иерархический двухбашенный трансформер (Окончание)

Нейросети в трейдинге: Иерархический двухбашенный трансформер (Окончание)

Мы продолжаем построение модели иерархического двухбашенного трансформера Hidformer, который предназначен для анализа и прогнозирования сложных многомерных временных рядов. В данной статье мы доведем начатую ранее работу до логического завершения с тестированием модели на реальных исторических данных.
preview
Нейросети в трейдинге: Многоагентная система с концептуальным подтверждением (FinCon)

Нейросети в трейдинге: Многоагентная система с концептуальным подтверждением (FinCon)

Предлагаем познакомиться с фреймворком FinCon, который представляет собой многоагентную систему на основе больших языковых моделей (LLM). Фреймворк использует концептуальное вербальное подкрепление для улучшения принятия решений и управления рисками, что позволяет эффективно выполнять разнообразные финансовые задачи.
preview
Управление рисками (Часть 2): Реализация расчета лотов в графическом интерфейсе

Управление рисками (Часть 2): Реализация расчета лотов в графическом интерфейсе

В этой статье мы рассмотрим, как улучшить и более эффективно применять концепции, изложенные в предыдущей статье, используя мощные библиотеки графических элементов управления MQL5. Я шаг за шагом проведу вас через процесс создания полностью функционального графического интерфейса, объясняя стоящий за ним план проектирования, а также назначение и принцип работы каждого используемого метода. Кроме того, в конце статьи мы протестируем созданную нами панель, чтобы убедиться в ее корректной работе и соответствии заявленным целям.
preview
Разработка системы репликации (Часть 36): Внесение корректировок (II)

Разработка системы репликации (Часть 36): Внесение корректировок (II)

Одна из вещей, которая может усложнить нашу жизнь как программистов, - это предположения. В этой статье я покажу вам, как опасно делать предположения: как в части программирования на MQL5, где принимается, что у курса будет определенная величина, так и при использовании MetaTrader 5, где принимается, что разные серверы работают одинаково.
preview
Автоматизация торговых стратегий на MQL5 (Часть 14): Стратегия каскадной торговли с MACD-RSI и статистическими методами

Автоматизация торговых стратегий на MQL5 (Часть 14): Стратегия каскадной торговли с MACD-RSI и статистическими методами

В настоящей статье мы представляем стратегию лейеринга, которая сочетает индикаторы MACD и RSI со статистическими методами для автоматизации динамической торговли на MQL5. Мы исследуем архитектуру этого каскадного подхода, подробно описываем его реализацию с помощью ключевых сегментов кода и даем рекомендации читателям по тестированию на истории для оптимизации эффективности. Наконец, в заключение мы подчеркиваем потенциал стратегии и закладываем основу для дальнейших усовершенствований в автоматической торговле.
preview
Майнинг данных балансов центробанков и получение картины мировой ликвидности

Майнинг данных балансов центробанков и получение картины мировой ликвидности

Майнинг данных балансов центробанков позволяет получить картину мировой ликвидности рынка Форекс и ключевых валют. Мы объединяем данные ФРС, ЕЦБ, BOJ и PBoC в композитный индекс и применяем машинное обучение для выявления скрытых закономерностей. Такой подход превращает сырой поток данных в реальные торговые сигналы, соединяя фундаментальный и технический анализ.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 25): Тестирование и торговля на нескольких таймфреймах

Возможности Мастера MQL5, которые вам нужно знать (Часть 25): Тестирование и торговля на нескольких таймфреймах

Стратегии, основанные на нескольких таймфреймах, по умолчанию не могут быть протестированы в советниках, собранных с помощью Мастера, из-за архитектуры кода MQL5, используемой в классах сборки. Мы рассмотрим способ обхода этого ограничения для стратегий, которые предполагают использование нескольких таймфреймов на примере квадратичной скользящей средней.
preview
Компоненты View и Controller для таблиц в парадигме MVC на MQL5: Простые элементы управления

Компоненты View и Controller для таблиц в парадигме MVC на MQL5: Простые элементы управления

В статье рассмотрены простые элементы управления как составляющие части более сложных графических элементов компонента View в рамках реализации таблиц в парадигме MVC (Model-View-Controller). Реализован базовый функционал компонента Controller для интерактивного взаимодействия элементов с пользователем и друг с другом. Это вторая статья, посвященная компоненту View, и четвёртая в серии статей о создании таблиц для клиентского терминала MetaTrader 5.
preview
Символьное уравнение прогнозирования цены с использованием SymPy

Символьное уравнение прогнозирования цены с использованием SymPy

Статья описывает интересный подход к алготрейдингу, основанный на символьных математических уравнениях вместо традиционных "черных ящиков" машинного обучения. Автор показывает, как преобразовать непрозрачные нейросети в читаемые математические формулы через библиотеку SymPy и полиномиальную регрессию, что позволяет полностью понимать логику принятия торговых решений. Подход сочетает вычислительную мощь ML с прозрачностью классических методов, давая трейдеру возможность анализировать, корректировать и адаптировать модели в реальном времени.
preview
Переосмысливаем классические стратегии (Часть VI): Анализ нескольких таймфреймов

Переосмысливаем классические стратегии (Часть VI): Анализ нескольких таймфреймов

В данной серии статей мы вновь рассматриваем классические стратегии, чтобы выяснить, можно ли улучшить их с помощью ИИ. В сегодняшней статье мы рассмотрим популярную стратегию анализа нескольких таймфреймов, чтобы оценить, можно ли улучшить эту стратегию с помощью ИИ.
preview
Упрощаем торговлю на новостях (Часть 4): Повышаем производительность

Упрощаем торговлю на новостях (Часть 4): Повышаем производительность

В этой статье будут рассмотрены методы улучшения работы советника в тестере стратегий, будет написан код для разделения времени новостных событий на почасовые категории. Доступ к этим новостным событиям будет осуществляться в течение указанного для них часа. Это гарантирует, что советник может эффективно управлять сделками на основе событий как в условиях высокой, так и низкой волатильности.
preview
Анализ временных разрывов цен в MQL5 (Часть II): Создаем тепловую карту распределения ликвидности во времени

Анализ временных разрывов цен в MQL5 (Часть II): Создаем тепловую карту распределения ликвидности во времени

Подробное руководство по созданию индикатора тепловой карты для MetaTrader 5, который визуализирует временное распределение цены в виде тепловой карты. Статья раскрывает математическую основу анализа временной плотности, где каждый ценовой уровень окрашивается от красного (минимальное время пребывания) до синего (максимальное время пребывания).
preview
Разработка системы репликации (Часть 49): Все усложняется (I)

Разработка системы репликации (Часть 49): Все усложняется (I)

В этой статье мы немного усложним ситуацию. Используя то, что было показано в предыдущих статьях, мы начнем открывать доступ к файлу шаблона, чтобы пользователь мог использовать свой собственный шаблон. Однако я буду вносить изменения постепенно, так как также буду дорабатывать индикатор, чтобы снизить нагрузку на MetaTrader 5.
preview
Алгоритм Искусственного Племени (Artificial Tribe Algorithm, ATA)

Алгоритм Искусственного Племени (Artificial Tribe Algorithm, ATA)

В статье подробно рассматриваются ключевые компоненты и инновации алгоритма оптимизации ATA, представляющего собой эволюционный метод с уникальной двойной системой поведения, которая адаптируется в зависимости от ситуации. Используя скрещивание для углубленного исследования, и миграцию для поиска в случае застревания в локальных оптимумах, ATA сочетает в себе индивидуальное и социальное обучение.
preview
Создание самооптимизирующихся советников на MQL5 (Часть 3): Динамическое следование за трендом и возврат к среднему значению

Создание самооптимизирующихся советников на MQL5 (Часть 3): Динамическое следование за трендом и возврат к среднему значению

Финансовые рынки обычно классифицируются как находящиеся во флэте (боковом движении) либо в тренде. Такой статичный взгляд на рынок может облегчить нам торговлю в краткосрочной перспективе. Однако он оторван от реалий рынка. В этой статье мы попытаемся лучше понять, как именно финансовые рынки перемещаются между этими двумя возможными режимами и как мы можем использовать наше новое понимание поведения рынка, чтобы обрести уверенность в наших алгоритмических торговых стратегиях.
preview
Удаленный профессиональный риск-менеджер Forex на Python

Удаленный профессиональный риск-менеджер Forex на Python

Делаем удаленный профессиональный риск-менеджер Для Forex на Python, разворачиваем его на сервере по шагам. В процессе статьи поймем, как программно управлять рисками на Форекс, и как больше не слить депозит на Форекс.
preview
Инженерия признаков с Python и MQL5 (Часть II): Угол наклона цены

Инженерия признаков с Python и MQL5 (Часть II): Угол наклона цены

На форуме MQL5 есть множество сообщений с просьбами помочь рассчитать угол наклона изменения цены. В этой статье мы рассмотрим один из способов расчета наклона изменения цены. Этот способ применим на любом рынке. Кроме того, мы определим, стоит ли разработка этой новой функции дополнительных усилий и времени. Выясним, может ли угол наклона цены улучшить точность нашей AI-модели при прогнозировании пары USDZAR на минутном таймфрейме.
preview
Нейросети в трейдинге: Двусторонняя адаптивная временная корреляция (BAT)

Нейросети в трейдинге: Двусторонняя адаптивная временная корреляция (BAT)

В статье представлен фреймворк BAT, обеспечивающий точное и адаптивное моделирование временной динамики. Используя двустороннюю временную корреляцию, BAT превращает последовательные изменения рыночных данных в структурированные, информативные представления. Модель сочетает высокую вычислительную эффективность с возможностью глубокой интеграции в торговые системы, позволяя выявлять как краткосрочные, так и долгосрочные паттерны движения.
preview
Нейросети в трейдинге: Двусторонняя адаптивная временная корреляция (Основные компоненты)

Нейросети в трейдинге: Двусторонняя адаптивная временная корреляция (Основные компоненты)

В этой статье мы продолжаем реализацию фреймворка BAT средствами MQL5, показывая, как двунаправленная корреляция и модуль SATMA позволяют анализировать динамику рынка в контексте текущего состояния. Представлены ключевые архитектурных решения, позволяющие адаптировать фреймворк к анализу финансовых данных.
preview
Передовые методы управления и оптимизации памяти в MQL5

Передовые методы управления и оптимизации памяти в MQL5

Откройте для себя практические методы оптимизации использования памяти в торговых системах MQL5. Научитесь создавать эффективные, стабильные и быстродействующие советники и индикаторы. Рассмотрим, как в действительности работает память в MQL5, распространенные ловушки, которые замедляют ваши системы или приводят их к сбоям, и — самое важное! — как их исправить.
preview
Нейросети в трейдинге: Эффективное извлечение признаков для точной классификации (Mantis)

Нейросети в трейдинге: Эффективное извлечение признаков для точной классификации (Mantis)

Познакомьтесь с Mantis — лёгкой фундаментальной моделью для классификации временных рядов на базе Transformer с контрастным предварительным обучением и гибридным вниманием, обеспечивающими рекордную точность и масштабируемость.
preview
Нейросети в трейдинге: Выявление аномалий в частотной области (Окончание)

Нейросети в трейдинге: Выявление аномалий в частотной области (Окончание)

Продолжаем работу над имплементацией подходов фреймворка CATCH, который объединяет преобразование Фурье и механизм частотного патчинга, обеспечивая точное выявление рыночных аномалий. В этой работе мы завершаем реализацию собственного видения предложенных подходов и проведем тестирование новых моделей на реальных исторических данных.
preview
Нейросети в трейдинге: Пространственно-временная модель состояния для анализа финансовых данных (Окончание)

Нейросети в трейдинге: Пространственно-временная модель состояния для анализа финансовых данных (Окончание)

Представляем адаптацию фреймворк E-STMFlow — современное решение для построения автономных торговых систем. В статье завершаем реализацию подходов, предложенных авторами фреймворка. Результаты тестирования демонстрируют стабильный рост капитала, минимальные просадки и предсказуемое распределение рисков, подтверждая практическую эффективность подхода и открывая перспективы дальнейшей оптимизации стратегии.
preview
Переосмысление индикаторов MQL5 и MetaTrader 5

Переосмысление индикаторов MQL5 и MetaTrader 5

Инновационный подход к сбору информации с индикаторов на MQL5 обеспечивает более гибкий и оптимизированный анализ данных, позволяя разработчикам вводить пользовательские данные в индикаторы для осуществления немедленных расчетов. Этот подход особенно полезен для алгоритмической торговли, поскольку он обеспечивает повышенный контроль над информацией, обрабатываемой индикаторами, выходя за рамки традиционных ограничений.
preview
Нейросети в трейдинге: Двухмерные модели пространства связей (Окончание)

Нейросети в трейдинге: Двухмерные модели пространства связей (Окончание)

Продолжаем знакомство с инновационным фреймворком Chimera — двухмерной моделью пространства состояний, использующей нейросетевые технологии для анализа многомерных временных рядов. Этот метод обеспечивает высокую точность прогнозирования при низких вычислительных затратах.
preview
Изучение MQL5 — от новичка до профи (Часть VII): Принципы отладки приложений MQL

Изучение MQL5 — от новичка до профи (Часть VII): Принципы отладки приложений MQL

Исправление ошибок — неотъемлемая часть цикла программирования. В этой статье рассмотрены типовые приемы исправления ошибок (отладки) любого приложения, работающего в среде MetaTrader 5.