Нейросети в трейдинге: Адаптивное восприятие рыночной динамики (STE-FlowNet)
Фреймворк STE-FlowNet открывает новый взгляд на анализ финансовых данных, реагируя на реальные события рынка, а не на фиксированные таймфреймы. Его архитектура сохраняет локальные и временные зависимости, позволяя отслеживать даже мелкие импульсы в динамике цен.
Прогнозируем Ренко — бары при помощи ИИ CatBoost
Как использовать Ренко-бары вместе с ИИ? Рассмотрим Ренко-трейдинг на Форекс с точностью прогнозов до 59.27%. Исследуем преимущества Ренко-баров для фильтрации рыночного шума, узнаем, почему объемные показатели важнее ценовых паттернов, и как настроить оптимальный размер блока Ренко для EURUSD. Пошаговое руководство по интеграции CatBoost, Python и MetaTrader 5 для создания собственной системы прогнозирования Ренко Форекс. Идеально для трейдеров, стремящихся выйти за рамки традиционного технического анализа.
Как построить советник, работающий автоматически (Часть 11): Автоматизация (III)
Автоматизированная система без соответствующей безопасности не будет успешной. Однако безопасность не будет обеспечена без хорошего понимания некоторых вещей. В этой статье мы разберемся с тем, почему достижение максимальной безопасности в автоматизированных системах является такой сложной задачей.
Нейросетевой торговый советник на базе PatchTST
Статья представляет революционную архитектуру PatchTST — специально адаптированный трансформер для анализа финансовых временных рядов, который разбивает рыночные данные на патчи из 16 баров для эффективной обработки. Подробно рассматривается полная реализация торгового робота в MQL5 — от математических основ и структур данных до готового Expert Advisor с системами управления рисками и непрерывного обучения.
Теория категорий в MQL5 (Часть 11): Графы
Статья продолжает серию о реализации теории категорий в MQL5. Здесь мы рассмотрим, как теория графов может быть интегрирована с моноидами и другими структурами данных при разработке стратегии закрытия торговой системы.
Нейросети — это просто (Часть 96): Многоуровневое извлечение признаков (MSFformer)
Эффективное извлечение и объединение долгосрочных зависимостей и краткосрочных характеристик остаются важной задачей в анализе временных рядов. Правильное их понимание и интеграция необходимы для создания точных и надежных предсказательных моделей.
Стратегия торговли каскадами ордеров на основе пересечений EMA для MetaTrader 5
В статье представлен автоматизированный алгоритм на основе пересечений EMA для MetaTrader 5. Подробная информация обо всех аспектах демонстрации советника на языке MQL5 и его тестирования в MetaTrader 5, от анализа характеристик ценового диапазона до управления рисками.
Автоматизация торговых стратегий на MQL5 (Часть 10): Разработка стратегии Trend Flat Momentum
В настоящей статье мы разрабатываем советник на MQL5 для стратегии Trend Flat Momentum. Мы комбинируем пересечение двух скользящих средних с фильтрами импульса RSI и CCI для генерации торговых сигналов. Также рассказываем о тестировании на истории и потенциальных улучшениях для повышения эффективности в реальных условиях.
Нейросети в трейдинге: Ансамбль агентов с использованием механизмов внимания (MASAAT)
Предлагаем познакомиться с мультиагентной адаптивной структурой оптимизации финансового портфеля (MASAAT), которая объединяет механизмы внимания и анализ временных рядов. MASAAT формирует множество агентов, которые анализируют ценовые ряды и направленные изменения, позволяя выявлять значимые колебания цен активов на различных уровнях детализации.
Теория категорий в MQL5 (Часть 10): Моноидные группы
Статья продолжает серию о реализации теории категорий в MQL5. Здесь мы рассматриваем группы моноидов как средство, нормализующее множества моноидов и делающее их более сопоставимыми в более широком диапазоне множеств моноидов и типов данных.
Нейросети в трейдинге: Прогнозирование временных рядов при помощи адаптивного модального разложения (Окончание)
В статье рассматривается адаптация и практическая реализация фреймворка ACEFormer средствами MQL5 в контексте алгоритмической торговли. Показаны ключевые архитектурные решения, особенности обучения и результаты тестирования модели на реальных данных.
Математические модели в сеточных стратегиях
В этой статье мы рассмотрим применение математики к сеточным стратегиям. Мы разберем основные принципы работы стратегии, её преимущества и недостатки. Вы узнаете, как построить торговую сетку, задавать оптимальные параметры и эффективно управлять рисками.
Альтернативные показатели риска и доходности в MQL5
В этой статье мы представим реализацию нескольких показателей доходности и риска, рассматриваемых как альтернативы коэффициенту Шарпа, и исследуем гипотетические кривые капитала для анализа их характеристик.
Нейросети в трейдинге: Снижение потребления памяти методом оптимизации Adam (Adam-mini)
Одним из направлений повышения эффективности процесса обучения и сходимости моделей является улучшение методов оптимизации. Adam-mini представляет собой адаптивный метод оптимизации, разработанный для улучшения базового алгоритма Adam.
MQL5-советник, интегрированный в Telegram (Часть 7): Анализ команд для автоматизации индикаторов на графиках
В этой статье мы узнаем, как интегрировать команды Telegram с MQL5 для автоматизации добавления индикаторов на торговые графики. Мы рассмотрим процесс анализа пользовательских команд, их выполнение на языке MQL5 и тестирование системы для обеспечения бесперебойной торговли на основе индикаторов.
MQL5-советник, интегрированный в Telegram (Часть 6): Добавление адаптивных встроенных кнопок
В этой статье мы интегрируем интерактивные встроенные кнопки в MQL5-советник, что позволяет осуществлять управление в режиме реального времени через Telegram. Каждое нажатие кнопки запускает определенные действия и отправляет ответы обратно пользователю. Мы также создадим функции для эффективной обработки Telegram-сообщений и callback-запросов.
Нейросети в трейдинге: Мультиагентная адаптивная модель (Окончание)
В предыдущей статье мы познакомились с мультиагентным адаптивным фреймворком MASA, который объединяет подходы обучения с подкреплением и адаптивные стратегии, обеспечивая гармоничный баланс между доходностью и рисками в турбулентных рыночных условиях. Нами был построен функционал отдельных агентов данного фреймворка, и в этой статье мы продолжим начатую работу, доведя её до логического завершения.
Нейросети в трейдинге: Transformer для облака точек (Pointformer)
В данной статье мы поговорим об алгоритмах использования методов внимания при решении задач обнаружения объектов в облаке точек. Обнаружение объектов в облаках точек имеет важное значение для многих реальных приложений.
Нейросети в трейдинге: От трансформеров к спайковым нейронам (Основные компоненты)
Предлагаем вниманию читателя реализацию подходов фреймворка SpikingBrain на основе рекуррентного линейного внимания с гейтами, подробно разобранного в этой статье. Алгоритмы прямого прохода, распределения градиентов и обновления весов обеспечивают эффективную обработку финансовых временных рядов и позволяют воплотить ключевые идеи фреймворка на практике.
Трейдинг с экономическим календарем MQL5 (Часть 1): Освоение функций экономического календаря MQL5
В этой статье мы рассмотрим, как использовать экономический календарь MQL5 для торговли, сначала разобравшись с его основными функциями. Затем мы реализуем ключевые функции экономического календаря в MQL5 для извлечения необходимых новостей для принятия торговых решений. Наконец, мы посмотрим, как использовать эту информацию для эффективного совершенствования торговых стратегий.
Нейросети в трейдинге: Иерархия навыков для адаптивного поведения агентов (Окончание)
В статье рассматривается практическая реализация фреймворка HiSSD в задачах алгоритмического трейдинга. Показано, как иерархия навыков и адаптивная архитектура могут быть использованы для построения устойчивых торговых стратегий.
Как создать торговый журнал с помощью MetaTrader и Google Sheets
Создайте торговый журнал с помощью MetaTrader и Google Sheets! Вы узнаете, как синхронизировать свои торговые данные с помощью HTTP POST и извлекать их с помощью HTTP-запросов. Наконец, у вас будет торговый журнал, который поможет эффективно отслеживать ваши сделки.
Нейросети в трейдинге: Повышение эффективности Transformer путем снижения резкости (SAMformer)
Обучение моделей Transformer требует больших объемов данных и часто затруднено из-за слабой способности моделей к обобщению на малых выборках. Фреймворк SAMformer помогает решить эту проблему, избегая плохих локальных минимумов. И повышает эффективность моделей даже на ограниченных обучающих выборках.
Связь торговых роботов MetaTrader 5 с внешними брокерами через API и Python
В настоящей статье мы обсудим реализацию MQL5 в партнерстве с Python для выполнения связанных с брокером операций. Представьте, что у вас есть постоянно работающий советник (EA), размещенный на VPS и совершающий сделки от вашего имени. В какой-то момент способность советника управлять средствами становится первостепенной. Она включает в себя такие операции, как пополнение вашего торгового счета и инициирование вывода средств. В данном обсуждении мы прольем свет на преимущества и практическую реализацию этих функций, обеспечивающих плавную интеграцию управления средствами в вашу торговую стратегию. Следите за обновлениями!
Нейросети в трейдинге: Интеграция теории хаоса в прогнозирование временных рядов (Attraos)
Фреймворк Attraos интегрирует теорию хаоса в долгосрочное прогнозирование временных рядов, рассматривая их как проекции многомерных хаотических динамических систем. Используя инвариантность аттрактора, модель применяет реконструкцию фазового пространства и динамическую память с несколькими разрешениями для сохранения исторических структур.
Создаем интерактивную MQL5-панель с использованием класса Controls (Часть 1): Настройка панели
В этой статье мы создадим интерактивную торговую панель с использованием класса Controls в MQL5, предназначенную для оптимизации торговых операций. Панель содержит заголовок, кнопки навигации для торговли, закрытия и информации, а также специализированные кнопки для заключения сделок и управления позициями. К концу статьи у нас будет базовая панель, готовая к дальнейшим улучшениям.
Нейросети в трейдинге: Инъекция глобальной информации в независимые каналы (InjectTST)
Большинство современных методов прогнозирования мультимодальных временных рядов используют подход независимых каналов. Тем самым игнорируется природная зависимость различных каналов одного временного ряда. Разумное использование 2 подходов (независимых и смешанных каналов) является ключом к повышению эффективности моделей.
Нейросети в трейдинге: Мультимодальный агент, дополненный инструментами (FinAgent)
Предлагаем познакомиться с фреймворком мультимодального агента для финансовой торговли FinAgent, который предназначен для анализа данных разных типов, отражающих рыночную динамику и исторические торговые паттерны.
Нейросети в трейдинге: Сеточная аппроксимация событийного потока как инструмент анализа ценовых паттернов (ADM-модуль)
В статье представлена реализация Adaptive Density Module (ADM), ключевого компонента фреймворка EEMFlow, средствами MQL5. Рассмотрены этапы построения и объединения субмодулей MDC и MDS, а также интеграция ADM в существующую торговую модель BAT. Результаты тестирования на исторических данных EURUSD показывают устойчивый рост депозита, контролируемые просадки и высокую стабильность кривой эквити.
Нейросети в трейдинге: Гибридные модели последовательностей графов (GSM++)
Гибридные модели последовательностей графов (GSM++) объединяют сильные стороны различных архитектур, обеспечивая высокую точность анализа данных и оптимизацию вычислительных затрат. Эти модели эффективно адаптируются к динамическим рыночным данным, улучшая представление и обработку финансовой информации.
Переосмысливаем классические стратегии (Часть II): Пробои индикатора Bollinger Bands
В статье рассматривается торговая стратегия, объединяющая линейный дискриминантный анализ (Linear Discriminant Analysis, LDA) с полосами Боллинджера с использованием прогнозов категориальных зон для стратегических сигналов входа в рынок.
Нейросети в трейдинге: Контекстно-зависимое обучение, дополненное памятью (MacroHFT)
Предлагаю познакомиться с фреймворком MacroHFT, который применяет контекстно зависимое обучение с подкреплением и память, для улучшения решений в высокочастотной торговле криптовалютами, используя макроэкономические данные и адаптивные агенты.
Нейросети в трейдинге: Адаптивное обнаружение рыночных аномалий (DADA)
Предлагаем познакомиться с фреймворком DADA — инновационным методом выявления аномалий во временных рядах. Он помогает отличить случайные колебания от подозрительных отклонений. В отличие от традиционных методов, DADA гибко подстраивается под разные данные. Вместо фиксированного уровня сжатия он использует несколько вариантов и выбирает наиболее подходящий для каждого случая.
Нейросети в трейдинге: Актер—Режиссёр—Критик (Actor—Director—Critic)
Предлагаем познакомиться с фреймворком Actor-Director-Critic, который сочетает в себе иерархическое обучение и многокомпонентную архитектуру для создания адаптивных торговых стратегий. В этой статье мы подробно рассмотрим, как использование Режиссера для классификации действий Актера помогает эффективно оптимизировать торговые решения и повышать устойчивость моделей в условиях финансовых рынков.
Визуальная оценка и корректировка торговли в MetaTrader 5
В тестере стратегий можно не только оптимизировать параметры торгового робота. Мы покажем, как оценить постфактум проторгованную историю своего счёта и внести корректировки в торговлю в тестере, изменяя размеры стоп-приказов открываемых позиций.
Совместное использование PSAR, Хейкин-Аши и глубокого обучения для трейдинга
В настоящем проекте исследуется сочетание глубокого обучения и технического анализа для тестирования торговых стратегий на рынке Форекс. Для быстрого экспериментирования используется скрипт на Python, использующий модель ONNX наряду с традиционными индикаторами, такими как PSAR, SMA и RSI, для прогнозирования движения пары EUR/USD. Затем скрипт MetaTrader 5 переносит эту стратегию в реальную среду, используя исторические данные и технический анализ для принятия обоснованных торговых решений. Результаты тестирования на исторических данных свидетельствуют об осторожном, но последовательном подходе, направленном на управление рисками и устойчивый рост, а не на агрессивную погоню за прибылью.
Нейросети в трейдинге: Гиперболическая модель латентной диффузии (HypDiff)
Статья рассматривает способы кодирования исходных данных в гиперболическом латентном пространстве через анизотропные диффузионные процессы. Это помогает точнее сохранять топологические характеристики текущей рыночной ситуации и повышает качество ее анализа.
Нейросети в трейдинге: Контекстно-зависимое обучение, дополненное памятью (Окончание)
Мы завершаем реализацию фреймворка MacroHFT для высокочастотной торговли криптовалютами, который использует контекстно-зависимое обучение с подкреплением и памятью для адаптации к динамичным рыночным условиям. И в завершении данной статьи будет проведено тестирование реализованных подходов, на реальных исторических данных, для оценки их эффективности.
Как упростить ручное тестирование стратегий с помощью MQL5: строим свой набор инструментов
В этой статье разрабатываем пользовательский набор инструментов MQL5 для удобного ручного тестирования на исторических данных в Тестере стратегий. Объясним его конструкцию и реализацию, уделив особое внимание интерактивным средствам управления сделками. Затем покажем, как использовать его для эффективного тестирования стратегий
Разработка инструментария для анализа движения цен (Часть 7): Советник Signal Pulse
Раскройте потенциал мультитаймфреймового анализа с помощью Signal Pulse — MQL5-советника, который объединяет полосы Боллинджера и стохастический осциллятор для предоставления точных торговых сигналов с высокой вероятностью возникновения. Узнайте, как реализовать эту стратегию и эффективно визуализировать возможности покупки и продажи с помощью стрелок. Советник идеально подходит для трейдеров, стремящихся улучшить свои решения посредством автоматического анализа на нескольких таймфреймах.