Статьи с примерами программирования торговых роботов на языке MQL5

icon

Эксперты являются вершиной программирования и желаемой целью каждого разработчика в автоматическом трейдинге. Написать собственного торгового робота вы сможете с помощью статей этого раздела. Новички шаг за шагом смогут пройти все этапы в создании, отладке и тестировании автоматических торговых систем.

Статьи научат вас не только программировать на языке MQL5, но и покажут как реализовать любые торговые идеи и техники. Вы узнаете, как написать трейлинг стоп, как реализовать управление капиталом, как получить значение индикатора и многое-многое другое.

Новая статья
последние | лучшие
preview
Нейросети — это просто (Часть 20): Автоэнкодеры

Нейросети — это просто (Часть 20): Автоэнкодеры

Мы продолжаем изучение алгоритмов обучения без учителя. Возможно, у читателя может возникнуть вопрос об соответствии последних публикаций теме нейронных сетей. В новой статье мы возвращаемся к использованию нейронных сетей.
Создание интерактивного приложения для отображения RSS-каналов в MetaTrader 5
Создание интерактивного приложения для отображения RSS-каналов в MetaTrader 5

Создание интерактивного приложения для отображения RSS-каналов в MetaTrader 5

В данной статье рассматривается создание приложения, отображающего RSS-каналы. Мы также рассмотрим аспекты применения Стандартной библиотеки при создании интерактивных программ для MetaTrader 5.
Графические интерфейсы VIII: Элемент "Файловый навигатор" (Глава 3)
Графические интерфейсы VIII: Элемент "Файловый навигатор" (Глава 3)

Графические интерфейсы VIII: Элемент "Файловый навигатор" (Глава 3)

В предыдущих главах восьмой части серии наша библиотека пополнилась несколькими классами для создания указателей для курсора мыши, календарей и древовидных списков. В настоящей статье рассмотрим элемент «Файловый навигатор», который тоже можно будет использовать в качестве части графического интерфейса MQL-приложения.
preview
Эксперименты с нейросетями (Часть 4): Шаблоны

Эксперименты с нейросетями (Часть 4): Шаблоны

Нейросети наше все. Проверяем на практике, так ли это. MetaTrader 5 как самодостаточное средство для использования нейросетей в трейдинге. Простое объяснение.
preview
Нелинейные индикаторы

Нелинейные индикаторы

В этой статье мы сделаем попытку рассмотреть некоторые способы построения нелинейных индикаторов и их использование в трейдинге. В торговой платформе MetaTrader довольно много индикаторов, которые используют нелинейные подходы.
preview
Как сделать график более интересным: добавление фона

Как сделать график более интересным: добавление фона

Многие рабочие терминалы содержат некое репрезентативное изображение, которое показывает что-то о пользователе, эти изображения делают рабочий стол более красивым и разнообразным. Давайте посмотрим, как сделать графики более интересными, добавив фон.
preview
Использование AutoIt с MQL5

Использование AutoIt с MQL5

В статье рассматривается создание скриптов для терминала MetraTrader 5 путем интеграции MQL5 с AutoIt. Я покажу, как автоматизировать различные задачи с помощью пользовательского интерфейса терминала, а также представлю класс, использующий библиотеку AutoItX.
preview
Готовим мультисимвольные мультипериодные индикаторы

Готовим мультисимвольные мультипериодные индикаторы

В статье рассмотрим принципы создания мультисимвольных мультипериодных индикаторов и получение от них данных в советниках и индикаторах. Рассмотрим основные нюансы использования мульти-индикаторов в советниках и индикаторах, и их отрисовку через буферы пользовательского индикатора.
preview
Нейросети — это просто (Часть 31): Эволюционные алгоритмы

Нейросети — это просто (Часть 31): Эволюционные алгоритмы

В предыдущей статье мы начали изучение безградиентных методов оптимизации. И познакомились с генетическим алгоритмом. Сегодня мы продолжаем начатую тему. И рассмотрим ещё один класс эволюционных алгоритмов.
preview
Нейросети — это просто (Часть 36): Реляционные модели обучения с подкреплением (Relational Reinforcement Learning)

Нейросети — это просто (Часть 36): Реляционные модели обучения с подкреплением (Relational Reinforcement Learning)

В рассмотренных ранее моделях обучения с подкреплением мы использовали различные варианты сверточных сетей, которые способны идентифицировать различные объекты в исходных данных. Основное преимущество сверточных сетей в способности идентифицировать объекты вне зависимости от их расположением. В тоже время, сверточные сети не всегда справляются с различными деформациями объектов и шумом. Но эти проблемы способна решить реляционная модель.
preview
Нейросети — это просто (Часть 28): Policy gradient алгоритм

Нейросети — это просто (Часть 28): Policy gradient алгоритм

Продолжаем изучение методов обучение с подкреплением. В предыдущей статье мы познакомились с методом глубокого Q-обучения. В котором мы обучаем модель прогнозирования предстоящей награды в зависимости от совершаемого действия в конкретной ситуации. И далее совершаем действие в соответствии с нашей политикой и ожидаемой наградой. Но не всегда возможно аппроксимировать Q-функцию. Или её аппроксимация не даёт желаемого результата. В таких случаях используют методы аппроксимации не функции полезности, а на прямую политику (стратегию) действий. Именно к таким методам относится policy gradient.
preview
Нейросети — это просто (Часть 21): Вариационные автоэнкодеры (VAE)

Нейросети — это просто (Часть 21): Вариационные автоэнкодеры (VAE)

В прошлой статье мы познакомились с алгоритмом работы автоэнкодера. Как и любой другой алгоритм, он имеет свои достоинства и недостатки. В оригинальной реализации автоэнкодер выполняет задачу максимально разделить объекты из обучающей выборки. А о том, как бороться с некоторыми его недостатками мы поговорим в этой статье.
preview
WebSocket для MetaTrader 5 — Использование Windows API

WebSocket для MetaTrader 5 — Использование Windows API

В этой статье мы используем WinHttp.dll, чтобы создать клиент WebSocket для MetaTrader 5-программ. В конечном итоге клиент должен быть выполнен в виде класса и протестирован во взаимодействии с WebSocket API от Binary.com.
Разработка социального технологического стартапа, часть I: Публикуем сигналы MetaTrader 5 в Твиттере
Разработка социального технологического стартапа, часть I: Публикуем сигналы MetaTrader 5 в Твиттере

Разработка социального технологического стартапа, часть I: Публикуем сигналы MetaTrader 5 в Твиттере

Сегодня мы поговорим о том, как привязать терминал MetaTrader 5 к аккаунту в Твиттере для того, чтобы публиковать сигналы вашего эксперта. Мы разрабатываем Social Decision Support System (Социальную систему поддержки принятия решений), далее SDSS, в PHP на основе веб-сервиса RESTful. В основе этой идеи лежит концепция автоматической торговли или, так называемая торговля при помощи компьютеров. Мы хотим, чтобы автоматические торговые сигналы эксперта проходили через фильтры когнитивных способностей разума человека.
Пишем Twitter-клиент для MetaTrader 4 и MetaTrader 5 без использования DLL
Пишем Twitter-клиент для MetaTrader 4 и MetaTrader 5 без использования DLL

Пишем Twitter-клиент для MetaTrader 4 и MetaTrader 5 без использования DLL

Хотите получать твиты или публиковать свои торговые сигналы в Твиттере? Больше не нужно искать решения — в этой серии статей мы рассмотрим, как работать с Твиттером без использования DLL. Мы вместе реализуем Tweeter API с помощью MQL. В первой статье начнем с возможностей аутентификации и авторизации в с Twitter API.
preview
Торговля на разрывах справедливой стоимости (FVG)/дисбалансах шаг за шагом: Подход Smart Money

Торговля на разрывах справедливой стоимости (FVG)/дисбалансах шаг за шагом: Подход Smart Money

Пошаговое руководство по созданию и реализации автоматизированного торгового алгоритма на основе разрывов справедливой стоимости (Fair Value Gap, FVG) на языке MQL5. Подробное руководство может быть полезно как новичкам, так и опытным трейдерам.
preview
Нейросети — это просто (Часть 18): Ассоциативные правила

Нейросети — это просто (Часть 18): Ассоциативные правила

В продолжение данной серии статей предлагаю познакомиться ещё с одним типом задач из методов обучения без учителя — поиск ассоциативных правил. Данный тип задач впервые был применен в ритейле для анализа корзин покупателей. О возможностях использования подобных алгоритмов в рамках трейдинга мы и поговорим в этой статье.
preview
Нейросети — это просто (Часть 35): Модуль внутреннего любопытства (Intrinsic Curiosity Module)

Нейросети — это просто (Часть 35): Модуль внутреннего любопытства (Intrinsic Curiosity Module)

Продолжаем изучение алгоритмов обучения с подкреплением. Все ранее рассмотренные нами алгоритмы требовали создания политики вознаграждения таким образом, чтобы агент мог оценить каждое свое действие на каждом переходе из одного состояния системы в другое. Но такой подход довольно искусственный. На практике же между действием и вознаграждением существует некоторый временной лаг. В данной статье я предлагаю Вам познакомиться с алгоритмом обучения модели, способным работать с различными временными задержками от действия до вознаграждения.
Прочие классы в библиотеке DoEasy (Часть 71): События коллекции объектов-чартов
Прочие классы в библиотеке DoEasy (Часть 71): События коллекции объектов-чартов

Прочие классы в библиотеке DoEasy (Часть 71): События коллекции объектов-чартов

В статье создадим функционал отслеживания некоторых событий объектов-чартов — добавление и удаление графиков символов, добавление и удаление подокон на график, а также добавление/удаление/изменение индикаторов в окнах чартов.
preview
Трейлинг-стоп в трейдинге

Трейлинг-стоп в трейдинге

В этой статье мы рассмотрим использование трейлинг-стопа в торговле — насколько он полезен и эффективен, и как его можно использовать. Эффективность трейлинг-стопа во многом зависит от волатильности цены и подбора уровня стоп-лосса. Для установки стоп-лосса могут использоваться самые разные подходы.
preview
Нейросети — это просто (Часть 17): Понижение размерности

Нейросети — это просто (Часть 17): Понижение размерности

Мы продолжаем рассмотрение моделей искусственного интеллекта. И, в частности, алгоритмов обучения без учителя. Мы уже познакомились с одним из алгоритмов кластеризации. А в этой статье я хочу поделиться с Вами вариантом решения задач понижения размерности.
preview
Нейросети — это просто (Часть 22): Обучение без учителя рекуррентных моделей

Нейросети — это просто (Часть 22): Обучение без учителя рекуррентных моделей

Мы продолжаем рассмотрение алгоритмов обучения без учителя. И сейчас я предлагаю обсудить особенности использования автоэнкодеров для обучения рекуррентных моделей.
preview
Опыт разработки торговой стратегии

Опыт разработки торговой стратегии

В этой статье мы сделаем попытку разработать собственную торговую стратегию. Любая торговая стратегия должна быть построена на основе какого-то статистического преимущества. Причем это преимущество должно существовать в течение долгого времени.
Прочие классы в библиотеке DoEasy (Часть 68): Класс объекта-окна графика и классы объектов-индикаторов в окне графика
Прочие классы в библиотеке DoEasy (Часть 68): Класс объекта-окна графика и классы объектов-индикаторов в окне графика

Прочие классы в библиотеке DoEasy (Часть 68): Класс объекта-окна графика и классы объектов-индикаторов в окне графика

В статье продолжим разрабатывать класс объекта-чарта. Добавим к нему список объектов-окон графика, в которых в свою очередь будут доступны списки индикаторов, размещённых в них.
preview
Разбираем примеры торговых стратегий в клиентском терминале

Разбираем примеры торговых стратегий в клиентском терминале

В статье рассмотрим наглядно по блок-схемам логику прилагаемых к терминалу учебных советников, расположенных в папке Experts\Free Robots, торгующих по свечным паттернам.
preview
Нейросети — это просто (Часть 37): Разреженное внимание (Sparse Attention)

Нейросети — это просто (Часть 37): Разреженное внимание (Sparse Attention)

В предыдущей статье мы познакомились с реляционными моделями, в архитектуре которых используются механизмы внимания. Одной из особенностей указанных моделей является повышенное использование вычислительных ресурсов. В данной статье будет предложен один их механизмов уменьшения количества вычислительных операций внутри блока Self-Attention. Что позволит увеличить производительность модели в целом.
preview
Как сделать любой тип Trailing Stop и подключить к советнику

Как сделать любой тип Trailing Stop и подключить к советнику

В статье рассмотрим классы для удобного создания различных трейлингов. Научимся подключать трейлинг-стоп к любому советнику.
preview
Работа с таймсериями в библиотеке DoEasy (Часть 56): Объект пользовательского индикатора, получение данных от объектов-индикаторов в коллекции

Работа с таймсериями в библиотеке DoEasy (Часть 56): Объект пользовательского индикатора, получение данных от объектов-индикаторов в коллекции

В статье рассмотрим создание объекта пользовательского индикатора для использования в советниках. Немного доработаем классы библиотеки и напишем методы для получения данных от объектов-индикаторов в экспертах.
preview
Изучение MQL5 — от новичка до профи (Часть VI):  Основы написания советников

Изучение MQL5 — от новичка до профи (Часть VI): Основы написания советников

Статья продолжает цикл для начинающих. Здесь будут рассмотрены основные принципы построения советников. Мы создадим два советника: первый будет торговать без индикаторов, отложенными ордерами, второй — на основе стандартного индикатора MA, торгующий с помощью сделок по текущей цене. Здесь я предполагаю, что вы уже не совсем новичок и владеете материалом предыдущих статей относительно свободно.
preview
Мультибот в MetaTrader: запуск множества роботов с одного графика

Мультибот в MetaTrader: запуск множества роботов с одного графика

В этой статье мы рассмотрим простой шаблон для создания универсального робота в MetaTrader, который можно использовать на нескольких графиках, но прицепив его лишь к одному графику, без необходимости настройки каждого экземпляра робота на каждом отдельном графике.
preview
Изучение MQL5 — от новичка до профи (Часть II): Базовые типы данных и использование переменных

Изучение MQL5 — от новичка до профи (Часть II): Базовые типы данных и использование переменных

Продолжение серии для начинающих. Здесь мы рассмотрим, как создавать константы и переменные, записывать дату, цвета и другие полезные данные. Научимся создавать перечисления вроде дней недели или стилей линий (сплошная, пунктирная и т.д.). Переменные и выражения - это база программирования. Они обязательно есть в 99% программ, поэтому понимать их критически важно. И поэтому, если вы - новичок в программировании - прошу. Уровень знания программирования: очень базовый - в пределах моей предыдущей статьи (ссылка - в начале).
preview
Магия временных торговых интервалов с инструментом Frames Analyzer

Магия временных торговых интервалов с инструментом Frames Analyzer

Что такое Frames Analyzer? Это подключаемый модуль к любому торговому эксперту для анализа фреймов оптимизации во время оптимизации параметров в тестере стратегий, а также вне тестера посредством чтения MQD-файла или базы данных, которая создаётся сразу после оптимизации параметров. Вы сможете делиться этими результатами оптимизации с другими пользователями, у которых есть инструмент Frames Analyzer, чтобы обсудить полученные результаты оптимизации вместе.
Работа с ценами в библиотеке DoEasy (Часть 61): Коллекция тиковых серий символов
Работа с ценами в библиотеке DoEasy (Часть 61): Коллекция тиковых серий символов

Работа с ценами в библиотеке DoEasy (Часть 61): Коллекция тиковых серий символов

Так как в работе программы могут участвовать разные символы, то для каждого символа необходимо создать свой список. Такие списки мы сегодня объединим в коллекцию тиковых данных. По сути это будет обычный список на основе класса динамического массива указателей на экземпляры класса CObject и его наследников Cтандартной библиотеки.
preview
Нейросети — это просто (Часть 30): Генетические алгоритмы

Нейросети — это просто (Часть 30): Генетические алгоритмы

Сегодня я хочу познакомить Вас с немного иным методом обучения. Можно сказать, что он заимствован из теории эволюции Дарвина. Наверное, он менее контролируем в сравнении с рассмотренными ранее методами. Но при этом позволяет обучать и недифференцируемые модели.
preview
Эксперименты с нейросетями (Часть 3): Практическое применение

Эксперименты с нейросетями (Часть 3): Практическое применение

Нейросети наше все. Проверяем на практике, так ли это. MetaTrader 5 как самодостаточное средство для использования нейросетей в трейдинге. Простое объяснение.
preview
Как построить советник, работающий автоматически (Часть 08): OnTradeTransaction

Как построить советник, работающий автоматически (Часть 08): OnTradeTransaction

В этой статье я покажу вам, как использовать систему обработки событий, для быстрой и лучшей обработки вопросов, связанных с системой ордеров, чтобы советник работал быстрее. Таким образом, ему не придется постоянно искать информацию.
preview
Эксперименты с нейросетями (Часть 6): Перцептрон как самодостаточное средство предсказания цены

Эксперименты с нейросетями (Часть 6): Перцептрон как самодостаточное средство предсказания цены

Пример использования перцептрона как самодостаточного средства предсказания цены. В статье даются общие понятия, представлен простейший готовый советник и результаты его оптимизации.
preview
Стратегия Билла Вильямса с индикаторами и прогнозами и без них

Стратегия Билла Вильямса с индикаторами и прогнозами и без них

Мы рассмотрим одну из известных стратегий Билла Вильямса и попытаемся улучшить ее с помощью индикаторов и прогнозов.
preview
Готовые шаблоны для подключения индикаторов в экспертах (Часть 3): Трендовые индикаторы

Готовые шаблоны для подключения индикаторов в экспертах (Часть 3): Трендовые индикаторы

В этой справочной статье рассмотрим стандартные индикаторы из категории "Трендовые индикаторы". Создадим готовые к применению шаблоны использования этих индикаторов в советниках — объявление и установка параметров, инициализация и деинициализация индикаторов и получение данных и сигналов из индикаторных буферов в советниках.
Прочие классы в библиотеке DoEasy (Часть 67): Класс объекта-чарта
Прочие классы в библиотеке DoEasy (Часть 67): Класс объекта-чарта

Прочие классы в библиотеке DoEasy (Часть 67): Класс объекта-чарта

В статье создадим класс объекта-чарта (одного графика торгового инструмента) и доработаем класс-коллекцию объектов mql5-сигнал так, чтобы каждый объект-сигнал, хранящийся в коллекции при обновлении списка также обновлял все свои параметры.