Статьи с примерами программирования торговых роботов на языке MQL5

icon

Эксперты являются вершиной программирования и желаемой целью каждого разработчика в автоматическом трейдинге. Написать собственного торгового робота вы сможете с помощью статей этого раздела. Новички шаг за шагом смогут пройти все этапы в создании, отладке и тестировании автоматических торговых систем.

Статьи научат вас не только программировать на языке MQL5, но и покажут как реализовать любые торговые идеи и техники. Вы узнаете, как написать трейлинг стоп, как реализовать управление капиталом, как получить значение индикатора и многое-многое другое.

Новая статья
последние | лучшие
preview
Нейросети в трейдинге: Двойная кластеризация временных рядов (Окончание)

Нейросети в трейдинге: Двойная кластеризация временных рядов (Окончание)

Продолжаем реализацию подходов, предложенных авторами фреймворка DUET, который предлагает инновационный подход к анализу временных рядов, сочетая временную и канальную кластеризацию для выявления скрытых закономерностей в анализируемых данных.
preview
Нейросети в трейдинге: Комплексный метод прогнозирования траекторий (Traj-LLM)

Нейросети в трейдинге: Комплексный метод прогнозирования траекторий (Traj-LLM)

В данной статье я хочу познакомить вас с одним интересным методом прогнозирования траекторий, разработанным для решения задач в области автономного движения транспортных средств. Авторы метода объединили в нем лучшие элементы различных архитектурных решений.
preview
Нейросети в трейдинге: Оптимизация LSTM для целей прогнозирования многомерных временных рядов (DA-CG-LSTM)

Нейросети в трейдинге: Оптимизация LSTM для целей прогнозирования многомерных временных рядов (DA-CG-LSTM)

Статья знакомит с алгоритмом DA-CG-LSTM, который предлагает новые подходы к анализу временных рядов и их прогнозированию. Из нее вы узнаете, как инновационные механизмы внимания и гибкость модели позволяют улучшить точность прогнозов.
preview
Обучаем нейросети на осцилляторах без подглядывания в будущее

Обучаем нейросети на осцилляторах без подглядывания в будущее

В статье описывается подход к разметке сделок с помощью осцилляторов для моделей машинного обучения. Это позволяет избавиться от look ahead bias. Показано, что такая разметка не приводит к переобучению моделей, а стратегии продолжают работать продолжительное время.
preview
Создаем простой мультивалютный советник с использованием MQL5 (Часть 3): Префиксы/суффиксы символов и торговая сессия

Создаем простой мультивалютный советник с использованием MQL5 (Часть 3): Префиксы/суффиксы символов и торговая сессия

Я получил комментарии от нескольких коллег-трейдеров о том, как использовать рассматриваемый мной мультивалютный советник у брокеров, использующих префиксы и/или суффиксы с именами символов, а также о том, как реализовать в советнике торговые часовые пояса или торговые сессии.
preview
Нейросети — это просто (Часть 76): Изучение разнообразных режимов взаимодействия (Multi-future Transformer)

Нейросети — это просто (Часть 76): Изучение разнообразных режимов взаимодействия (Multi-future Transformer)

В данной статье мы продолжаем тему прогнозирования предстоящего ценового движения. И предлагаю Вам познакомиться с архитектурой Multi-future Transformer. Основная идея которого заключается в разложении мультимодального распределение будущего на несколько унимодальных распределений, что позволяет эффективно моделировать разнообразные модели взаимодействия между агентами на сцене.
preview
Как интегрировать в советник концепции Smart Money (BOS) в сочетании с индикатором RSI

Как интегрировать в советник концепции Smart Money (BOS) в сочетании с индикатором RSI

Концепция Smart Money (Break of Structure) в сочетании с индикатором RSI для принятия обоснованных решений в автоматической торговле на основе структуры рынка.
preview
Нейросетевой торговый робот на современной архитектуре нейросети Mamba с селективной SSM

Нейросетевой торговый робот на современной архитектуре нейросети Mamba с селективной SSM

Статья исследует революционную архитектуру нейронной сети Mamba/SSM для прогнозирования финансовых временных рядов. Представлена полная реализация на MQL5 современной альтернативы Transformer с линейной сложностью O(N) вместо квадратичной O(N²). Детально рассмотрены селективные State Space Models, hardware-aware оптимизации, patching техники и продвинутые методы обучения AdamW. Включены практические результаты тестирования, показавшие увеличение точности с 62% до 71% при снижении времени обучения с 45 до 8 минут. Представлен готовый торговый советник с автообучением и адаптивным риск-менеджментом для MetaTrader 5.
preview
Нейросети в трейдинге: Мультиагентная адаптивная модель (MASA)

Нейросети в трейдинге: Мультиагентная адаптивная модель (MASA)

Предлагаю познакомиться с мультиагентным адаптивным фреймворком MASA, который объединяет обучение с подкреплением и адаптивные стратегии, обеспечивая гармоничный баланс между доходностью и управлением рисками в турбулентных рыночных условиях.
preview
Введение в MQL5 (Часть 6): Функции для работы с массивами для начинающих (II)

Введение в MQL5 (Часть 6): Функции для работы с массивами для начинающих (II)

Продолжим изучение возможностей языка программирования MQL5. В этой статье, предназначенной для начинающих, мы продолжим изучать функции для работы массивами, перейдя к более сложным концепциям, которые обязательно пригодятся при разработке эффективных торговых стратегий. В этот раз познакомимся с функциями ArrayPrint, ArrayInsert, ArraySize, ArrayRange, ArrarRemove, ArraySwap, ArrayReverse и ArraySort. Функции массивы знать обязательно, если вы хотите достичь высокого уровня в области алготрейдинга. Это очередная глава на пути к мастерству.
preview
Разработка интерактивного графического пользовательского интерфейса на MQL5 (Часть 2): Добавление элементов управления и адаптивности

Разработка интерактивного графического пользовательского интерфейса на MQL5 (Часть 2): Добавление элементов управления и адаптивности

Расширение панели графического интерфейса на MQL5 с помощью динамических функций может существенно улучшить торговый опыт пользователей. Благодаря включению интерактивных элементов, эффектов наведения и обновлению данных в реальном времени эта панель становится мощным инструментом современного трейдера.
preview
Оцениваем будущую производительность с помощью доверительных интервалов

Оцениваем будущую производительность с помощью доверительных интервалов

В этой статье мы углубимся в применение методов бутстреппинга (bootstrapping) как средства оценки будущей эффективности автоматизированной стратегии.
preview
Нейросети в трейдинге: Иерархическое обучение признаков облака точек

Нейросети в трейдинге: Иерархическое обучение признаков облака точек

Продолжаем изучение алгоритмов для извлечения признаков из облака точек. И в данной статье мы познакомимся с механизмами повышения эффективности метода PointNet.
preview
Нейросети в трейдинге: Параметроэффективный Transformer с сегментированным вниманием (PSformer)

Нейросети в трейдинге: Параметроэффективный Transformer с сегментированным вниманием (PSformer)

Предлагаем познакомиться с новым фреймворком PSformer, который адаптирует архитектуру ванильного Transformer для решения задач прогнозирования многомерных временных рядов. В основе фреймворка лежат две ключевые инновации: механизм совместного использования параметров (PS) и внимание к пространственно-временным сегментам (SegAtt).
preview
Нейросети в трейдинге: Гибридный торговый фреймворк с предиктивным кодированием (StockFormer)

Нейросети в трейдинге: Гибридный торговый фреймворк с предиктивным кодированием (StockFormer)

Предлагаем познакомиться с гибридной торговой системой StockFormer, которая объединят предиктивное кодирование и алгоритмы обучения с подкреплением (RL). Во фреймворке используются 3 ветви Transformer с интегрированным механизмом Diversified Multi-Head Attention (DMH-Attn), который улучшает ванильный модуль внимания за счет многоголового блока Feed-Forward, что позволяет захватывать разнообразные паттерны временных рядов в разных подпространствах.
preview
Критерии тренда. Окончание

Критерии тренда. Окончание

В этой статье мы рассмотрим особенности применения некоторых критериев тренда на практике. А также сделаем попытку разработать несколько новых критериев. Основное внимание будет уделено эффективности применения этих критериев для анализа рыночных данных и трейдинга.
preview
Многослойный перцептрон и алгоритм обратного распространения ошибки (Часть 3): Интеграция с тестером стратегии - Обзор (I)

Многослойный перцептрон и алгоритм обратного распространения ошибки (Часть 3): Интеграция с тестером стратегии - Обзор (I)

Многослойный перцептрон - это эволюция простого перцептрона, способного решать нелинейно разделяемые задачи. Вместе с алгоритмом обратного распространения можно эффективно обучить данную нейронную сеть. В третьей части серии статей о многослойном перцептроне и обратном распространении мы посмотрим, как интегрировать эту технику в тестер стратегий. Эта интеграция позволит использовать комплексный анализ данных и принимать лучшие решения для оптимизации торговых стратегий. В данном обзоре мы обсудим преимущества и проблемы применения этой методики.
preview
Объединение стратегий фундаментального и технического анализа на языке MQL5 для начинающих

Объединение стратегий фундаментального и технического анализа на языке MQL5 для начинающих

В этой статье обсудим, как эффективно интегрировать следование тренду и фундаментальные принципы в один советник для создания более надежной стратегии. Статья продемонстрирует, насколько просто любой желающий может приступить к созданию собственных торговых алгоритмов с помощью языка MQL5.
preview
Нейросети в трейдинге: Мультимодальный агент, дополненный инструментами (Окончание)

Нейросети в трейдинге: Мультимодальный агент, дополненный инструментами (Окончание)

Продолжаем работу по реализации алгоритмов мультимодального агента для финансовой торговли FinAgent, предназначенного для анализа мультимодальных данных рыночной динамики и исторических торговых паттернов.
preview
Нейросети в трейдинге: Гиперболическая модель латентной диффузии (Окончание)

Нейросети в трейдинге: Гиперболическая модель латентной диффузии (Окончание)

Применение анизотропных диффузионных процессов для кодирования исходных данных в гиперболическом латентном пространстве, как это предложено в фреймворке HypDIff, способствует сохранению топологических особенностей текущей рыночной ситуации, и повышает качество её анализа. В предыдущей статье мы начали реализацию предложенных подходов средствами MQL5. И сегодня продолжим начатую работу, доведя ее до логического завершения.
preview
Теория категорий в MQL5 (Часть 7): Мульти-, относительные и индексированные домены

Теория категорий в MQL5 (Часть 7): Мульти-, относительные и индексированные домены

Теория категорий представляет собой разнообразный и расширяющийся раздел математики, который лишь недавно начал освещаться в MQL5-сообществе. Эта серия статей призвана рассмотреть некоторые из ее концепций для создания открытой библиотеки и дальнейшему использованию этого замечательного раздела в создании торговых стратегий.
preview
Нейросети в трейдинге: Повышение эффективности Transformer путем снижения резкости (Окончание)

Нейросети в трейдинге: Повышение эффективности Transformer путем снижения резкости (Окончание)

SAMformer предлагает решение ключевых проблем Transformer в долгосрочном прогнозировании временных рядов, включая сложность обучения и слабое обобщение на малых выборках. Его неглубокая архитектура и оптимизация с учетом резкости обеспечивают избегание плохих локальных минимумов. В данной статье мы продолжим реализацию подходов с использованием MQL5 и оценим их практическую ценность.
preview
Как реализовать автоматическую оптимизацию в советниках MQL5

Как реализовать автоматическую оптимизацию в советниках MQL5

Пошаговое руководство по автоматической оптимизации на MQL5 для советников. Мы рассмотрим надежную логику оптимизации, лучшие практики по выбору параметров, а также как реконструировать стратегии с помощью бэк-тестирования. Кроме того, будут рассмотрены методы более высокого уровня, такие как пошаговая форвард-оптимизация, которые улучшат ваш подход к трейдингу.
preview
Нейросети — это просто (Часть 94): Оптимизация последовательности исходных данных

Нейросети — это просто (Часть 94): Оптимизация последовательности исходных данных

При работе с временными рядами мы всегда используем исходные данные в их исторической последовательности. Но является ли это оптимальным вариантом? Существует мнение, что изменение последовательности исходных данных позволит повысить эффективность обучаемых моделей. В данной статье я предлагаю вам познакомиться с одним из таких методов.
preview
Квантовая нейросеть на MQL5 (Часть I): Создаем включаемый файл

Квантовая нейросеть на MQL5 (Часть I): Создаем включаемый файл

Статья представляет новый подход к созданию торговых систем на основе квантовых принципов и искусственного интеллекта. Автор описывает разработку уникальной нейронной сети, которая выходит за рамки классического машинного обучения, объединяя квантовую механику с современными архитектурами ИИ.
preview
Торгуем опционы без опционов (Часть 3): Сложные опционные стратегии

Торгуем опционы без опционов (Часть 3): Сложные опционные стратегии

Рассматриваются флэтовые (не направленные) и трендовые (направленные) опционные стратегии и их реализация на MQL5. Модернизируется эксперт, написанный в предыдущей статье. Добавляется отображение опционных уровней. Теперь пора рассмотреть работу и реализовать те стратегии, которые используются на практике опционными трейдерами.
preview
Теория категорий в MQL5 (Часть 12): Порядок

Теория категорий в MQL5 (Часть 12): Порядок

Статья является частью серии о реализации графов средствами теории категорий в MQL5 и посвящена отношению порядка (Order Theory). Мы рассмотрим два основных типа упорядочения и исследуем, как концепции отношения порядка могут поддерживать моноидные множества при принятии торговых решений.
preview
MQL5-советник, интегрированный в Telegram (Часть 5): Отправка команд из Telegram в MQL5 и получение ответов в реальном времени

MQL5-советник, интегрированный в Telegram (Часть 5): Отправка команд из Telegram в MQL5 и получение ответов в реальном времени

В этой статье мы создадим несколько классов для облегчения взаимодействия в реальном времени между MQL5 и Telegram. Мы займемся извлечением команд из Telegram, их декодированием и интерпретацией, а также отправкой соответствующих ответов. Под конец мы протестируем эти взаимодействия и убедимся в их правильной работе в торговой среде.
preview
Индикатор прогнозирования ARIMA на MQL5

Индикатор прогнозирования ARIMA на MQL5

В данной статье мы создаем индикатор прогнозирования ARIMA на MQL5. Рассматривается, как модель ARIMA формирует прогнозы, её применимость к рынку Форекс и фондовому рынку в целом. Также объясняется, что такое авторегрессия AR, каким образом авторегрессионные модели используются для прогнозирования, и как работает механизм авторегрессии.
preview
Разработка динамического советника на нескольких парах (Часть 1): Корреляция и обратная корреляция валютных пар

Разработка динамического советника на нескольких парах (Часть 1): Корреляция и обратная корреляция валютных пар

Динамический советник на нескольких парах использует как корреляционные, так и обратные корреляционные стратегии для оптимизации эффективности торговли. Анализируя рыночные данные в режиме реального времени, он определяет и использует взаимосвязь между валютными парами.
preview
Создание советника на MQL5 на основе стратегии Прорыва дневного диапазона (Daily Range Breakout)

Создание советника на MQL5 на основе стратегии Прорыва дневного диапазона (Daily Range Breakout)

В настоящей статье мы создаём советника на MQL5 на основе стратегии Прорыва дневного диапазона (Daily Range Breakout). Мы рассмотрим ключевые концепции стратегии, разработаем схему советника и реализуем логику прорыва на MQL5. В конце мы изучаем методы бэк-тестирования и оптимизации советника, чтобы максимально повысить его эффективность.
preview
Система самообучения с подкреплением для алгоритмической торговли на MQL5

Система самообучения с подкреплением для алгоритмической торговли на MQL5

В статье создаётся многоагентная система машинного обучения для алгоритмической торговли на MetaTrader 5 на основе обучения с подкреплением. Система имеет трёхуровневую архитектуру: нейроны памяти хранят опыт, агенты принимают независимые решения, коллективный разум объединяет их через взвешенное голосование. Система непрерывно совершенствуется через Q-обучение, прунинг неэффективных нейронов и эволюционное снижение исследования.
preview
Построение модели для ограничения диапазона сигналов по тренду (Часть 4): Настройка стиля отображения для каждой трендовой волны

Построение модели для ограничения диапазона сигналов по тренду (Часть 4): Настройка стиля отображения для каждой трендовой волны

В статье показаны возможности мощного языка MQL5 для отрисовки различных стилей индикаторов в MetaTrader 5. Мы также рассмотрим скрипты и их использование в нашей модели.
preview
Нейросети в трейдинге: Использование языковых моделей для прогнозирования временных рядов

Нейросети в трейдинге: Использование языковых моделей для прогнозирования временных рядов

Мы продолжаем рассмотрения моделей прогнозирования временных рядов. И в данной статье я предлагаю познакомиться с комплексным алгоритмом, построенным на использовании предварительно обученной языковой модели.
preview
Нейросети в трейдинге: Изучение локальной структуры данных

Нейросети в трейдинге: Изучение локальной структуры данных

Эффективное выявление и сохранение локальной структуры рыночных данных в условиях шума является важной задачей в трейдинге. Использование механизма Self-Attention показало хорошие результаты в обработке подобных данных, но классический метод не учитывают локальные особенности исходной структуры. В данной статье я предлагаю познакомиться с алгоритмом, способным учитывать эти структурные зависимости.
preview
Реализация обобщенного показателя Херста и теста коэффициента дисперсии в MQL5

Реализация обобщенного показателя Херста и теста коэффициента дисперсии в MQL5

В этой статье мы рассмторим, как можно использовать обобщенный показатель Херста (Generalized Hurst Exponent) и тест коэффициента дисперсии (Variance Ratio) для анализа поведения ценовых рядов в MQL5.
preview
Нейросети в трейдинге: Эффективное извлечение признаков для точной классификации (Окончание)

Нейросети в трейдинге: Эффективное извлечение признаков для точной классификации (Окончание)

Фреймворк Mantis превращает сложные временные ряды в информативные токены и служит надёжным фундаментом для интеллектуального торгового Агента, готового работать в реальном времени.
preview
Реализация торговой стратегии Rapid-Fire с использованием индикаторов Parabolic SAR и простой скользящей средней (SMA) на MQL5

Реализация торговой стратегии Rapid-Fire с использованием индикаторов Parabolic SAR и простой скользящей средней (SMA) на MQL5

В настоящей статье мы разрабатываем торговый советник Rapid-Fire на MQL5, используя индикаторы Parabolic SAR и простую скользящую среднюю (SMA) для создания гибкой торговой стратегии. Мы подробно описываем реализацию стратегии, включая использование индикаторов, генерацию сигналов, а также процесс тестирования и оптимизации.
preview
Нейросети в трейдинге: Иерархический векторный Transformer (HiVT)

Нейросети в трейдинге: Иерархический векторный Transformer (HiVT)

Предлагаем познакомиться с методом Иерархический Векторный Transformer (HiVT), который был разработан для быстрого и точного прогнозирования мультимодальных временных рядов.
preview
Нейросети в трейдинге: Параметроэффективный Transformer с сегментированным вниманием (Окончание)

Нейросети в трейдинге: Параметроэффективный Transformer с сегментированным вниманием (Окончание)

В предыдущей работе мы рассмотрели теоретические аспекты фреймворка PSformer, который включает две основные инновации в архитектуру классического Transformer: механизм совместного использования параметров (Parameter Shared — PS) и внимание к пространственно-временным сегментам (SegAtt). И в данной статье мы продолжаем начатую работу по реализации предложенных подходов средствами MQL5.