Статьи с примерами программирования торговых роботов на языке MQL5

icon

Эксперты являются вершиной программирования и желаемой целью каждого разработчика в автоматическом трейдинге. Написать собственного торгового робота вы сможете с помощью статей этого раздела. Новички шаг за шагом смогут пройти все этапы в создании, отладке и тестировании автоматических торговых систем.

Статьи научат вас не только программировать на языке MQL5, но и покажут как реализовать любые торговые идеи и техники. Вы узнаете, как написать трейлинг стоп, как реализовать управление капиталом, как получить значение индикатора и многое-многое другое.

Новая статья
последние | лучшие
preview
Создаем простой мультивалютный советник с использованием MQL5 (Часть 3): Префиксы/суффиксы символов и торговая сессия

Создаем простой мультивалютный советник с использованием MQL5 (Часть 3): Префиксы/суффиксы символов и торговая сессия

Я получил комментарии от нескольких коллег-трейдеров о том, как использовать рассматриваемый мной мультивалютный советник у брокеров, использующих префиксы и/или суффиксы с именами символов, а также о том, как реализовать в советнике торговые часовые пояса или торговые сессии.
preview
Нейросети — это просто (Часть 94): Оптимизация последовательности исходных данных

Нейросети — это просто (Часть 94): Оптимизация последовательности исходных данных

При работе с временными рядами мы всегда используем исходные данные в их исторической последовательности. Но является ли это оптимальным вариантом? Существует мнение, что изменение последовательности исходных данных позволит повысить эффективность обучаемых моделей. В данной статье я предлагаю вам познакомиться с одним из таких методов.
preview
Теория категорий в MQL5 (Часть 12): Порядок

Теория категорий в MQL5 (Часть 12): Порядок

Статья является частью серии о реализации графов средствами теории категорий в MQL5 и посвящена отношению порядка (Order Theory). Мы рассмотрим два основных типа упорядочения и исследуем, как концепции отношения порядка могут поддерживать моноидные множества при принятии торговых решений.
preview
Объединение стратегий фундаментального и технического анализа на языке MQL5 для начинающих

Объединение стратегий фундаментального и технического анализа на языке MQL5 для начинающих

В этой статье обсудим, как эффективно интегрировать следование тренду и фундаментальные принципы в один советник для создания более надежной стратегии. Статья продемонстрирует, насколько просто любой желающий может приступить к созданию собственных торговых алгоритмов с помощью языка MQL5.
preview
Введение в MQL5 (Часть 6): Функции для работы с массивами для начинающих (II)

Введение в MQL5 (Часть 6): Функции для работы с массивами для начинающих (II)

Продолжим изучение возможностей языка программирования MQL5. В этой статье, предназначенной для начинающих, мы продолжим изучать функции для работы массивами, перейдя к более сложным концепциям, которые обязательно пригодятся при разработке эффективных торговых стратегий. В этот раз познакомимся с функциями ArrayPrint, ArrayInsert, ArraySize, ArrayRange, ArrarRemove, ArraySwap, ArrayReverse и ArraySort. Функции массивы знать обязательно, если вы хотите достичь высокого уровня в области алготрейдинга. Это очередная глава на пути к мастерству.
preview
Переосмысливаем классические стратегии (Часть XI): Пересечение скользящих средних (II)

Переосмысливаем классические стратегии (Часть XI): Пересечение скользящих средних (II)

Скользящие средние и стохастический осциллятор можно использовать для генерации торговых сигналов, следующих за трендом. Однако эти сигналы будут наблюдаться только после того, как произойдет ценовое движение. Мы можем эффективно преодолеть этот неизбежный лаг в технических индикаторах с помощью искусственного интеллекта. В настоящей статье мы расскажем, как создать полностью автономный советник на базе ИИ таким образом, чтобы улучшить любую из ваших существующих торговых стратегий. Даже самая старая торговая стратегия может быть улучшена.
preview
Постфактумный анализ торговли: подбираем TrailingStop и новые стопы в тестере стратегий

Постфактумный анализ торговли: подбираем TrailingStop и новые стопы в тестере стратегий

Продолжаем тему анализа совершённых сделок в тестере стратегий для улучшения качества торговли. Проверим, как использование различных трейлингов поможет изменить уже полученные результаты торговли.
preview
Реализация торговой стратегии на основе полос Боллинджера с помощью MQL5: Пошаговое руководство

Реализация торговой стратегии на основе полос Боллинджера с помощью MQL5: Пошаговое руководство

Пошаговое руководство по реализации на MQL5 алгоритма автоматической торговли, основанной на торговой стратегии «Полосы Боллинджера». Подробное учебное пособие на основе создания советника, который может быть полезен трейдерам.
preview
Как построить советник, работающий автоматически (Часть 11): Автоматизация (III)

Как построить советник, работающий автоматически (Часть 11): Автоматизация (III)

Автоматизированная система без соответствующей безопасности не будет успешной. Однако безопасность не будет обеспечена без хорошего понимания некоторых вещей. В этой статье мы разберемся с тем, почему достижение максимальной безопасности в автоматизированных системах является такой сложной задачей.
preview
Оцениваем будущую производительность с помощью доверительных интервалов

Оцениваем будущую производительность с помощью доверительных интервалов

В этой статье мы углубимся в применение методов бутстреппинга (bootstrapping) как средства оценки будущей эффективности автоматизированной стратегии.
preview
Нейросети в трейдинге: Оптимизация LSTM для целей прогнозирования многомерных временных рядов (DA-CG-LSTM)

Нейросети в трейдинге: Оптимизация LSTM для целей прогнозирования многомерных временных рядов (DA-CG-LSTM)

Статья знакомит с алгоритмом DA-CG-LSTM, который предлагает новые подходы к анализу временных рядов и их прогнозированию. Из нее вы узнаете, как инновационные механизмы внимания и гибкость модели позволяют улучшить точность прогнозов.
preview
Теория категорий в MQL5 (Часть 11): Графы

Теория категорий в MQL5 (Часть 11): Графы

Статья продолжает серию о реализации теории категорий в MQL5. Здесь мы рассмотрим, как теория графов может быть интегрирована с моноидами и другими структурами данных при разработке стратегии закрытия торговой системы.
preview
MQL5-советник, интегрированный в Telegram (Часть 3): Отправка скриншотов графиков с подписями из MQL5 в Telegram

MQL5-советник, интегрированный в Telegram (Часть 3): Отправка скриншотов графиков с подписями из MQL5 в Telegram

В этой статье мы создадим советник MQL5, который кодирует скриншоты графиков в виде графических данных и отправляет их в чат Telegram посредством HTTP-запросов. Внедрив кодирование и передачу изображений, мы улучшим существующую систему MQL5-Telegram путем добавления визуальной торговой аналитики непосредственно в Telegram.
preview
Как интегрировать в советник концепции Smart Money (BOS) в сочетании с индикатором RSI

Как интегрировать в советник концепции Smart Money (BOS) в сочетании с индикатором RSI

Концепция Smart Money (Break of Structure) в сочетании с индикатором RSI для принятия обоснованных решений в автоматической торговле на основе структуры рынка.
preview
Построение модели для ограничения диапазона сигналов по тренду (Часть 4): Настройка стиля отображения для каждой трендовой волны

Построение модели для ограничения диапазона сигналов по тренду (Часть 4): Настройка стиля отображения для каждой трендовой волны

В статье показаны возможности мощного языка MQL5 для отрисовки различных стилей индикаторов в MetaTrader 5. Мы также рассмотрим скрипты и их использование в нашей модели.
preview
Нейросети в трейдинге: Использование языковых моделей для прогнозирования временных рядов

Нейросети в трейдинге: Использование языковых моделей для прогнозирования временных рядов

Мы продолжаем рассмотрения моделей прогнозирования временных рядов. И в данной статье я предлагаю познакомиться с комплексным алгоритмом, построенным на использовании предварительно обученной языковой модели.
preview
Нейросети в трейдинге: Изучение локальной структуры данных

Нейросети в трейдинге: Изучение локальной структуры данных

Эффективное выявление и сохранение локальной структуры рыночных данных в условиях шума является важной задачей в трейдинге. Использование механизма Self-Attention показало хорошие результаты в обработке подобных данных, но классический метод не учитывают локальные особенности исходной структуры. В данной статье я предлагаю познакомиться с алгоритмом, способным учитывать эти структурные зависимости.
preview
Теория категорий в MQL5 (Часть 10): Моноидные группы

Теория категорий в MQL5 (Часть 10): Моноидные группы

Статья продолжает серию о реализации теории категорий в MQL5. Здесь мы рассматриваем группы моноидов как средство, нормализующее множества моноидов и делающее их более сопоставимыми в более широком диапазоне множеств моноидов и типов данных.
preview
Нейросети в трейдинге: Мультиагентная адаптивная модель (MASA)

Нейросети в трейдинге: Мультиагентная адаптивная модель (MASA)

Предлагаю познакомиться с мультиагентным адаптивным фреймворком MASA, который объединяет обучение с подкреплением и адаптивные стратегии, обеспечивая гармоничный баланс между доходностью и управлением рисками в турбулентных рыночных условиях.
preview
Нейросети в трейдинге: Иерархический векторный Transformer (HiVT)

Нейросети в трейдинге: Иерархический векторный Transformer (HiVT)

Предлагаем познакомиться с методом Иерархический Векторный Transformer (HiVT), который был разработан для быстрого и точного прогнозирования мультимодальных временных рядов.
preview
Формулировка динамического советника на нескольких парах (Часть 1): Корреляция и обратная корреляция валютных пар

Формулировка динамического советника на нескольких парах (Часть 1): Корреляция и обратная корреляция валютных пар

Динамический советник на нескольких парах использует как корреляционные, так и обратные корреляционные стратегии для оптимизации эффективности торговли. Анализируя рыночные данные в режиме реального времени, он определяет и использует взаимосвязь между валютными парами.
preview
Нейросети в трейдинге: Эффективное извлечение признаков для точной классификации (Окончание)

Нейросети в трейдинге: Эффективное извлечение признаков для точной классификации (Окончание)

Фреймворк Mantis превращает сложные временные ряды в информативные токены и служит надёжным фундаментом для интеллектуального торгового Агента, готового работать в реальном времени.
preview
Нейросети — это просто (Часть 96): Многоуровневое извлечение признаков (MSFformer)

Нейросети — это просто (Часть 96): Многоуровневое извлечение признаков (MSFformer)

Эффективное извлечение и объединение долгосрочных зависимостей и краткосрочных характеристик остаются важной задачей в анализе временных рядов. Правильное их понимание и интеграция необходимы для создания точных и надежных предсказательных моделей.
preview
Реализация обобщенного показателя Херста и теста коэффициента дисперсии в MQL5

Реализация обобщенного показателя Херста и теста коэффициента дисперсии в MQL5

В этой статье мы рассмторим, как можно использовать обобщенный показатель Херста (Generalized Hurst Exponent) и тест коэффициента дисперсии (Variance Ratio) для анализа поведения ценовых рядов в MQL5.
preview
Нейросети в трейдинге: Transformer для облака точек (Pointformer)

Нейросети в трейдинге: Transformer для облака точек (Pointformer)

В данной статье мы поговорим об алгоритмах использования методов внимания при решении задач обнаружения объектов в облаке точек. Обнаружение объектов в облаках точек имеет важное значение для многих реальных приложений.
preview
Стратегия торговли каскадами ордеров на основе пересечений EMA для MetaTrader 5

Стратегия торговли каскадами ордеров на основе пересечений EMA для MetaTrader 5

В статье представлен автоматизированный алгоритм на основе пересечений EMA для MetaTrader 5. Подробная информация обо всех аспектах демонстрации советника на языке MQL5 и его тестирования в MetaTrader 5, от анализа характеристик ценового диапазона до управления рисками.
preview
MQL5-советник, интегрированный в Telegram (Часть 7): Анализ команд для автоматизации индикаторов на графиках

MQL5-советник, интегрированный в Telegram (Часть 7): Анализ команд для автоматизации индикаторов на графиках

В этой статье мы узнаем, как интегрировать команды Telegram с MQL5 для автоматизации добавления индикаторов на торговые графики. Мы рассмотрим процесс анализа пользовательских команд, их выполнение на языке MQL5 и тестирование системы для обеспечения бесперебойной торговли на основе индикаторов.
preview
Как функции столетней давности могут обновить ваши торговые стратегии

Как функции столетней давности могут обновить ваши торговые стратегии

В этой статье речь пойдет о функциях Радемахера и Уолша. Мы исследуем способы применения этих функций для анализа финансовых временных рядов, а также рассмотрим различные варианты их применения в трейдинге.
preview
Нейросети в трейдинге: Ансамбль агентов с использованием механизмов внимания (MASAAT)

Нейросети в трейдинге: Ансамбль агентов с использованием механизмов внимания (MASAAT)

Предлагаем познакомиться с мультиагентной адаптивной структурой оптимизации финансового портфеля (MASAAT), которая объединяет механизмы внимания и анализ временных рядов. MASAAT формирует множество агентов, которые анализируют ценовые ряды и направленные изменения, позволяя выявлять значимые колебания цен активов на различных уровнях детализации.
preview
Реализация торговой стратегии Rapid-Fire с использованием индикаторов Parabolic SAR и простой скользящей средней (SMA) на MQL5

Реализация торговой стратегии Rapid-Fire с использованием индикаторов Parabolic SAR и простой скользящей средней (SMA) на MQL5

В настоящей статье мы разрабатываем торговый советник Rapid-Fire на MQL5, используя индикаторы Parabolic SAR и простую скользящую среднюю (SMA) для создания гибкой торговой стратегии. Мы подробно описываем реализацию стратегии, включая использование индикаторов, генерацию сигналов, а также процесс тестирования и оптимизации.
preview
Нейросети в трейдинге: Параметроэффективный Transformer с сегментированным вниманием (Окончание)

Нейросети в трейдинге: Параметроэффективный Transformer с сегментированным вниманием (Окончание)

В предыдущей работе мы рассмотрели теоретические аспекты фреймворка PSformer, который включает две основные инновации в архитектуру классического Transformer: механизм совместного использования параметров (Parameter Shared — PS) и внимание к пространственно-временным сегментам (SegAtt). И в данной статье мы продолжаем начатую работу по реализации предложенных подходов средствами MQL5.
preview
Альтернативные показатели риска и доходности в MQL5

Альтернативные показатели риска и доходности в MQL5

В этой статье мы представим реализацию нескольких показателей доходности и риска, рассматриваемых как альтернативы коэффициенту Шарпа, и исследуем гипотетические кривые капитала для анализа их характеристик.
preview
Нейросети в трейдинге: Снижение потребления памяти методом оптимизации Adam (Adam-mini)

Нейросети в трейдинге: Снижение потребления памяти методом оптимизации Adam (Adam-mini)

Одним из направлений повышения эффективности процесса обучения и сходимости моделей является улучшение методов оптимизации. Adam-mini представляет собой адаптивный метод оптимизации, разработанный для улучшения базового алгоритма Adam.
preview
Нейросети в трейдинге: Инъекция глобальной информации в независимые каналы (InjectTST)

Нейросети в трейдинге: Инъекция глобальной информации в независимые каналы (InjectTST)

Большинство современных методов прогнозирования мультимодальных временных рядов используют подход независимых каналов. Тем самым игнорируется природная зависимость различных каналов одного временного ряда. Разумное использование 2 подходов (независимых и смешанных каналов) является ключом к повышению эффективности моделей.
preview
Нейросети в трейдинге: Прогнозирование временных рядов при помощи адаптивного модального разложения (Окончание)

Нейросети в трейдинге: Прогнозирование временных рядов при помощи адаптивного модального разложения (Окончание)

В статье рассматривается адаптация и практическая реализация фреймворка ACEFormer средствами MQL5 в контексте алгоритмической торговли. Показаны ключевые архитектурные решения, особенности обучения и результаты тестирования модели на реальных данных.
preview
Нейросети в трейдинге: Мультиагентная адаптивная модель (Окончание)

Нейросети в трейдинге: Мультиагентная адаптивная модель (Окончание)

В предыдущей статье мы познакомились с мультиагентным адаптивным фреймворком MASA, который объединяет подходы обучения с подкреплением и адаптивные стратегии, обеспечивая гармоничный баланс между доходностью и рисками в турбулентных рыночных условиях. Нами был построен функционал отдельных агентов данного фреймворка, и в этой статье мы продолжим начатую работу, доведя её до логического завершения.
preview
MQL5-советник, интегрированный в Telegram (Часть 5): Отправка команд из Telegram в MQL5 и получение ответов в реальном времени

MQL5-советник, интегрированный в Telegram (Часть 5): Отправка команд из Telegram в MQL5 и получение ответов в реальном времени

В этой статье мы создадим несколько классов для облегчения взаимодействия в реальном времени между MQL5 и Telegram. Мы займемся извлечением команд из Telegram, их декодированием и интерпретацией, а также отправкой соответствующих ответов. Под конец мы протестируем эти взаимодействия и убедимся в их правильной работе в торговой среде.
preview
Индикатор прогнозирования ARIMA на MQL5

Индикатор прогнозирования ARIMA на MQL5

В данной статье мы создаем индикатор прогнозирования ARIMA на MQL5. Рассматривается, как модель ARIMA формирует прогнозы, её применимость к рынку Форекс и фондовому рынку в целом. Также объясняется, что такое авторегрессия AR, каким образом авторегрессионные модели используются для прогнозирования, и как работает механизм авторегрессии.
preview
Нейросети в трейдинге: Повышение эффективности Transformer путем снижения резкости (SAMformer)

Нейросети в трейдинге: Повышение эффективности Transformer путем снижения резкости (SAMformer)

Обучение моделей Transformer требует больших объемов данных и часто затруднено из-за слабой способности моделей к обобщению на малых выборках. Фреймворк SAMformer помогает решить эту проблему, избегая плохих локальных минимумов. И повышает эффективность моделей даже на ограниченных обучающих выборках.
preview
Как реализовать автоматическую оптимизацию в советниках MQL5

Как реализовать автоматическую оптимизацию в советниках MQL5

Пошаговое руководство по автоматической оптимизации на MQL5 для советников. Мы рассмотрим надежную логику оптимизации, лучшие практики по выбору параметров, а также как реконструировать стратегии с помощью бэк-тестирования. Кроме того, будут рассмотрены методы более высокого уровня, такие как пошаговая форвард-оптимизация, которые улучшат ваш подход к трейдингу.