Artigos com exemplos de como programar robôs de negociação na linguagem MQL5

icon

Os experts são o coração da negociação automatizada e o objetivo de toda pessoa que programa estratégias de trading. Você pode criar seu próprio robô de negociação com a ajuda dos artigos desta seção. Os principiantes podem seguir passo a passo todas as etapas dos sistemas de negociação automatizados: criação, depuração e teste.

Os artigos ensinam não apenas como programar em MQL5, mas também mostram como implementar quaisquer ideias e técnicas de negociação. Aprenda a programar um trailing stop, a aplicar o gerenciamento de dinheiro, a calcular o valor de um indicador e muito, muito mais.

Novo artigo
recentes | melhores
preview
Criando um Expert Advisor Integrado com MQL5-Telegram (Parte 3): Enviando Capturas de Tela de Gráficos com Legendas de MQL5 para o Telegram

Criando um Expert Advisor Integrado com MQL5-Telegram (Parte 3): Enviando Capturas de Tela de Gráficos com Legendas de MQL5 para o Telegram

Neste artigo, criamos um Expert Advisor em MQL5 que codifica capturas de tela de gráficos como dados de imagem e os envia para um chat do Telegram via requisições HTTP. Ao integrar a codificação e transmissão de fotos, aprimoramos o sistema MQL5-Telegram existente com insights visuais de trading diretamente no Telegram.
preview
Redes neurais em trading: Aprendizado contextual com memória (MacroHFT)

Redes neurais em trading: Aprendizado contextual com memória (MacroHFT)

Apresento o framework MacroHFT, que aplica aprendizado por reforço contextual com memória para melhorar as decisões em trading de alta frequência de criptomoedas, utilizando dados macroeconômicos e agentes adaptativos.
preview
Informações detalhadas sobre trading baseado em volume: Indo além dos gráficos OHLC

Informações detalhadas sobre trading baseado em volume: Indo além dos gráficos OHLC

Um sistema de trading algorítmico que combina análise de volume com métodos de machine learning, em especial com redes neurais LSTM. Diferente das abordagens tradicionais de trading, que se concentram principalmente no movimento dos preços, este sistema enfatiza os padrões de volume e suas derivadas para prever os movimentos do mercado. A metodologia inclui três componentes principais: análise das derivadas do volume (primeira e segunda derivada), previsões LSTM para padrões de volume e indicadores técnicos tradicionais.
preview
Negociando com o Calendário Econômico do MQL5 (Parte 1): Dominando as Funções do Calendário Econômico do MQL5

Negociando com o Calendário Econômico do MQL5 (Parte 1): Dominando as Funções do Calendário Econômico do MQL5

Neste artigo, exploramos como usar o Calendário Econômico do MQL5 para negociar, primeiro entendendo suas funcionalidades principais. Em seguida, implementamos funções-chave do Calendário Econômico no MQL5 para extrair dados relevantes de notícias para decisões de negociação. Por fim, concluímos mostrando como utilizar essas informações para aprimorar as estratégias de negociação de forma eficaz.
preview
Redes neurais em trading: Transformer eficiente em parâmetros com atenção segmentada (Conclusão)

Redes neurais em trading: Transformer eficiente em parâmetros com atenção segmentada (Conclusão)

No artigo anterior, abordamos os aspectos teóricos do framework PSformer, que incorpora duas inovações principais na arquitetura clássica do Transformer: o mecanismo de compartilhamento de parâmetros (Parameter Shared — PS) e a atenção a segmentos espaço-temporais (SegAtt). Neste artigo, damos continuidade à implementação dessas abordagens usando os recursos do MQL5.
preview
Análise de Sentimento no Twitter com Sockets

Análise de Sentimento no Twitter com Sockets

Este inovador bot de negociação integra o MetaTrader 5 com Python para aproveitar a análise de sentimento em tempo real nas mídias sociais para decisões automatizadas de negociação. Ao analisar o sentimento no Twitter relacionado a instrumentos financeiros específicos, o bot traduz as tendências das mídias sociais em sinais acionáveis de negociação. Ele utiliza uma arquitetura cliente-servidor com comunicação via socket, permitindo uma interação contínua entre as capacidades de negociação do MT5 e o poder de processamento de dados do Python.
preview
Criando um Painel Administrativo de Negociação em MQL5 (Parte III): Aprimorando a Interface com Estilo Visual (I)

Criando um Painel Administrativo de Negociação em MQL5 (Parte III): Aprimorando a Interface com Estilo Visual (I)

Neste artigo, focaremos no estilo visual da interface gráfica do usuário (GUI) do nosso Painel Administrativo de Negociação usando MQL5. Exploraremos várias técnicas e recursos disponíveis no MQL5 que permitem a personalização e otimização da interface, garantindo que ela atenda às necessidades dos traders enquanto mantém uma estética atraente.
preview
Redes neurais em trading: Análise de nuvem de pontos (PointNet)

Redes neurais em trading: Análise de nuvem de pontos (PointNet)

A análise direta da nuvem de pontos permite evitar um aumento excessivo no volume de dados e aprimorar a eficiência dos modelos em tarefas de classificação e segmentação. Abordagens deste tipo demonstram um bom desempenho e resistência a perturbações nos dados brutos.
preview
Análise pós-fato da negociação: ajustando TrailingStop e novos stops no testador de estratégias

Análise pós-fato da negociação: ajustando TrailingStop e novos stops no testador de estratégias

Seguimos com o tema da análise de negociações realizadas no testador de estratégias para melhorar a qualidade da negociação. Vamos verificar como o uso de diferentes métodos de trailing pode alterar os resultados de negociação já obtidos.
preview
Redes neurais em trading: Explorando a estrutura local dos dados

Redes neurais em trading: Explorando a estrutura local dos dados

A identificação eficaz e a preservação da estrutura local dos dados de mercado em meio ao ruído são tarefas cruciais no trading. Embora o uso do mecanismo Self-Attention tenha mostrado bons resultados no processamento desses dados, o método clássico não leva em conta as características locais da estrutura original. Neste artigo, proponho conhecer um algoritmo capaz de considerar essas dependências estruturais.
preview
Redes neurais de maneira fácil (Parte 94): Otimização da sequência de dados iniciais

Redes neurais de maneira fácil (Parte 94): Otimização da sequência de dados iniciais

Ao trabalhar com séries temporais, geralmente usamos os dados na sequência histórica. Mas isso é realmente o mais eficiente? Há quem acredite que modificar a sequência dos dados iniciais pode aumentar a eficácia dos modelos de aprendizado. Neste artigo, vou apresentar um desses métodos.
preview
Criando um painel de administração de trading em MQL5 (Parte VII): Usuário confiável, recuperação e criptografia

Criando um painel de administração de trading em MQL5 (Parte VII): Usuário confiável, recuperação e criptografia

Alertas de segurança, como aqueles que aparecem sempre que o gráfico é atualizado, uma nova par é adicionada ao chat do painel administrativo do EA ou o terminal é reiniciado, podem se tornar cansativos. Nesta discussão, vamos analisar e implementar uma função que rastreia o número de tentativas de login para identificar um usuário confiável. Após um determinado número de tentativas malsucedidas, o aplicativo passará para um procedimento avançado de login, que também facilita a recuperação de senha para usuários que possam tê-la esquecido. Além disso, veremos como é possível integrar de forma eficiente a criptografia no painel administrativo para aumentar a segurança.
preview
Implementação do Exponente de Hurst Generalizado e do Teste de Razão de Variância em MQL5

Implementação do Exponente de Hurst Generalizado e do Teste de Razão de Variância em MQL5

Neste artigo, investigamos como o Exponente de Hurst Generalizado e o Teste de Razão de Variância podem ser utilizados para analisar o comportamento das séries de preços em MQL5.
preview
Reimaginando Estratégias Clássicas (Parte IV): SP500 e Notas do Tesouro dos EUA

Reimaginando Estratégias Clássicas (Parte IV): SP500 e Notas do Tesouro dos EUA

Nesta série de artigos, analisamos estratégias clássicas de negociação usando algoritmos modernos para determinar se podemos melhorar a estratégia utilizando IA. No artigo de hoje, revisamos uma abordagem clássica para negociar o SP500 usando a relação que ele tem com as Notas do Tesouro dos EUA.
preview
Aplicação da teoria dos jogos em algoritmos de trading

Aplicação da teoria dos jogos em algoritmos de trading

Criamos um Expert Advisor adaptativo e autodidata, baseado em aprendizado de máquina DQN com inferência causal multidimensional. Ele negociará com sucesso simultaneamente em sete pares de moedas, enquanto os agentes de diferentes pares trocarão informações entre si.
preview
Negociação de notícias facilitada (parte 5): realizando negociações (II)

Negociação de notícias facilitada (parte 5): realizando negociações (II)

Este artigo expandirá a classe de gerenciamento de trades para incluir ordens buy-stop e sell-stop para operar em eventos de notícias e implementará uma restrição de expiração nessas ordens para evitar qualquer negociação durante a noite. Uma função de slippage será incorporada ao expert para tentar prevenir ou minimizar possíveis deslizes que podem ocorrer ao usar ordens stop no trading, especialmente durante eventos de notícias.
preview
Redes neurais em trading: Modelo de dupla atenção para previsão de tendências

Redes neurais em trading: Modelo de dupla atenção para previsão de tendências

Damos continuidade à discussão sobre o uso da representação linear por partes de séries temporais, iniciada no artigo anterior. Hoje, falaremos sobre a combinação desse método com outras abordagens de análise de séries temporais para melhorar a qualidade da previsão das tendências dos movimentos de preços.
preview
Aplicação da teoria dos jogos em algoritmos de trading

Aplicação da teoria dos jogos em algoritmos de trading

Criamos um Expert Advisor adaptativo e autodidata, baseado em aprendizado de máquina DQN com inferência causal multidimensional. Ele negociará com sucesso simultaneamente em sete pares de moedas, enquanto os agentes de diferentes pares trocarão informações entre si.
preview
Redes neurais de maneira fácil (Parte 78): Detecção de objetos baseada em Transformador (DFFT)

Redes neurais de maneira fácil (Parte 78): Detecção de objetos baseada em Transformador (DFFT)

Neste artigo, proponho olhar a questão da construção de uma estratégia de trading de outra perspectiva. Em vez de prever o movimento futuro dos preços, tentaremos construir um sistema de trading baseado na análise de dados históricos.
preview
Reimaginando estratégias clássicas (Parte III): Prevendo máximas mais altas e mínimas mais baixas

Reimaginando estratégias clássicas (Parte III): Prevendo máximas mais altas e mínimas mais baixas

Neste artigo, analisamos empiricamente estratégias de trading clássicas para verificar se é possível aprimorá-las com inteligência artificial (IA). Utilizaremos o modelo de Análise Discriminante Linear (Linear Discriminant Analysis) para tentar prever máximas mais altas e mínimas mais baixas.
preview
Redes neurais em trading: Transformer vetorial hierárquico (Conclusão)

Redes neurais em trading: Transformer vetorial hierárquico (Conclusão)

Continuaremos a explorar o método Transformer Vetorial Hierárquico. Neste artigo, concluiremos a construção do modelo, realizando seu treinamento e teste em dados históricos reais.
preview
Redes neurais de maneira fácil (Parte 70): melhorando a política usando operadores de forma fechada (CFPI)

Redes neurais de maneira fácil (Parte 70): melhorando a política usando operadores de forma fechada (CFPI)

Neste artigo, propomos explorar um algoritmo que utiliza operadores de melhoria de política de forma fechada para otimizar as ações do Agente em um ambiente off-line.
preview
Redes neurais de maneira fácil (Parte 76): explorando diversos modos de interação (Multi-future Transformer)

Redes neurais de maneira fácil (Parte 76): explorando diversos modos de interação (Multi-future Transformer)

Neste artigo, continuamos o tema de previsão do movimento de preços. E convido você a conhecer a arquitetura do Multi-future Transformer. A ideia principal é decompor a distribuição multimodal do futuro em várias distribuições unimodais, permitindo modelar eficientemente diversos modos de interação entre os agentes na cena.
preview
Redes neurais em trading: Transformer para nuvens de pontos (Pointformer)

Redes neurais em trading: Transformer para nuvens de pontos (Pointformer)

Neste artigo, falaremos sobre os algoritmos que utilizam métodos de atenção para resolver tarefas de detecção de objetos em nuvens de pontos. A detecção de objetos em nuvens de pontos é de grande importância para diversas aplicações práticas.
preview
Negociando com o Calendário Econômico MQL5 (Parte 2): Criando um Painel de Notícias

Negociando com o Calendário Econômico MQL5 (Parte 2): Criando um Painel de Notícias

Neste artigo, criamos um painel prático de notícias usando o Calendário Econômico MQL5 para aprimorar nossa estratégia de negociação. Começamos projetando o layout, focando em elementos-chave como nomes dos eventos, importância e horário, antes de avançar para a configuração dentro do MQL5. Por fim, implementamos um sistema de filtragem para exibir apenas as notícias mais relevantes, dando aos traders acesso rápido a eventos econômicos impactantes.
preview
Redes neurais de maneira fácil (Parte 69): restrição de política comportamental com base na densidade de dados off-line (SPOT)

Redes neurais de maneira fácil (Parte 69): restrição de política comportamental com base na densidade de dados off-line (SPOT)

No aprendizado off-line, utilizamos um conjunto de dados fixo, e isso não abrange toda a variedade do ambiente. Durante o processo de treinamento, nosso Agente pode gerar ações fora desse conjunto. Sem feedback do ambiente, a precisão dessas ações é duvidosa. Manter a política do Agente dentro do conjunto de treinamento se torna importante para confiar nos resultados. Vamos falar mais sobre isso aqui neste artigo.
preview
Redes neurais em trading: Conjunto de agentes com uso de mecanismos de atenção (Conclusão)

Redes neurais em trading: Conjunto de agentes com uso de mecanismos de atenção (Conclusão)

No artigo anterior, exploramos o framework adaptativo multiagente MASAAT, que utiliza um conjunto de agentes para realizar análise cruzada de séries temporais multimodais em diferentes escalas de representação dos dados. Hoje, concluiremos o trabalho iniciado anteriormente, implementando as abordagens desse framework utilizando MQL5.
preview
Desenvolvimento de ferramentas para análise do movimento de preços (Parte 2): Script de comentários analíticos

Desenvolvimento de ferramentas para análise do movimento de preços (Parte 2): Script de comentários analíticos

Dando continuidade ao nosso trabalho para simplificar a interação com o comportamento do preço, temos o prazer de apresentar mais uma ferramenta que pode melhorar significativamente sua análise de mercado e ajudar na tomada de decisões bem fundamentadas. Esta ferramenta exibe indicadores técnicos importantes, como os preços do dia anterior, níveis significativos de suporte e resistência, além do volume de negociação, gerando automaticamente dicas visuais no gráfico.
preview
Criando um painel de administração de trading em MQL5 (Parte VI): Painel de controle de trading (II)

Criando um painel de administração de trading em MQL5 (Parte VI): Painel de controle de trading (II)

Neste artigo, vamos melhorar o painel de controle de trading do nosso painel administrativo multifuncional. Apresentaremos uma função auxiliar poderosa, que simplifica o código, tornando-o mais legível, fácil de manter e eficiente. Também mostraremos como integrar botões adicionais e aprimorar facilmente a interface para atender a um espectro mais amplo de tarefas de trading. Seja para gerenciar posições, ajustar ordens ou facilitar a interação com o usuário, este guia ajudará você a desenvolver um painel de controle de trading confiável e prático.
preview
Redes neurais de maneira fácil (Parte 74): previsão adaptativa de trajetórias

Redes neurais de maneira fácil (Parte 74): previsão adaptativa de trajetórias

Proponho a você conhecer um método bastante eficaz de previsão de trajetórias multiagentes, que é capaz de se adaptar a diferentes condições ambientais.
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 17): Negociação Multimoedas

Técnicas do MQL5 Wizard que você deve conhecer (Parte 17): Negociação Multimoedas

Negociar com múltiplas moedas não está disponível por padrão quando um expert advisor é montado através do assistente. Examinamos dois hacks possíveis que os traders podem fazer ao tentar testar suas ideias com mais de um símbolo ao mesmo tempo.
preview
Redes neurais de maneira fácil (Parte 72): previsão de trajetórias em condições de ruído

Redes neurais de maneira fácil (Parte 72): previsão de trajetórias em condições de ruído

A qualidade da previsão de estados futuros desempenha um papel importante no método Goal-Conditioned Predictive Coding, com o qual nos familiarizamos no artigo anterior. Neste artigo, quero apresentar a vocês um algoritmo capaz de aumentar significativamente a qualidade da previsão em ambientes estocásticos, que incluem os mercados financeiros.
preview
Redes neurais em trading: Ator–Diretor–Crítico (Actor–Director–Critic)

Redes neurais em trading: Ator–Diretor–Crítico (Actor–Director–Critic)

Propomos conhecer o framework Actor-Director-Critic, que combina aprendizado hierárquico e uma arquitetura com múltiplos componentes para criar estratégias de trading adaptativas. Neste artigo, analisamos em detalhe como o uso do Diretor para classificar as ações do Ator ajuda a otimizar decisões de trading de forma eficiente e a aumentar a robustez dos modelos nas condições dos mercados financeiros.
preview
Redes neurais em trading: Dupla clusterização de séries temporais (Conclusão)

Redes neurais em trading: Dupla clusterização de séries temporais (Conclusão)

Damos continuidade à implementação dos métodos propostos pelos autores do framework DUET, que apresenta uma abordagem inovadora para a análise de séries temporais, combinando clusterização temporal e de canais para revelar padrões ocultos nos dados analisados.
preview
Criação de um painel de administração de trading em MQL5 (Parte V): Autenticação de dois fatores (2FA)

Criação de um painel de administração de trading em MQL5 (Parte V): Autenticação de dois fatores (2FA)

Este artigo aborda o aumento da segurança do painel de administração de trading, atualmente em desenvolvimento. Vamos explorar como integrar o MQL5 a uma nova estratégia de segurança, utilizando a API do Telegram para autenticação de dois fatores (2FA). O artigo traz informações valiosas sobre a aplicação de MQL5 para reforçar medidas de segurança. Além disso, veremos a função MathRand, focando em sua funcionalidade e na forma como pode ser usada de forma eficiente em nosso sistema de segurança.
preview
Redes neurais em trading: Análise da situação do mercado usando o transformador de padrões

Redes neurais em trading: Análise da situação do mercado usando o transformador de padrões

Ao analisarmos a situação do mercado com nossos modelos, o elemento-chave é a vela. No entanto, sabe-se há muito tempo que os padrões de velas podem ajudar a prever movimentos futuros de preço. Neste artigo, apresentaremos um método que permite integrar essas duas abordagens.
preview
Reimaginando Estratégias Clássicas (Parte VI): Análise de Múltiplos Tempos Gráficos

Reimaginando Estratégias Clássicas (Parte VI): Análise de Múltiplos Tempos Gráficos

Nesta série de artigos, revisitamos estratégias clássicas para ver se podemos melhorá-las usando IA. No artigo de hoje, vamos examinar a popular estratégia de análise de múltiplos tempos gráficos para avaliar se a estratégia seria aprimorada com IA.
preview
Construindo um Modelo de Restrição de Tendência com Candlesticks (Parte 9): Expert Advisor de Múltiplas Estratégias (III)

Construindo um Modelo de Restrição de Tendência com Candlesticks (Parte 9): Expert Advisor de Múltiplas Estratégias (III)

Bem-vindo à terceira parte da nossa série sobre tendências! Hoje, vamos nos aprofundar no uso de divergência como estratégia para identificar pontos de entrada ideais dentro da tendência diária predominante. Também apresentaremos um mecanismo personalizado de proteção de lucro, semelhante a um trailing stop-loss, mas com melhorias exclusivas. Além disso, vamos atualizar o Trend Constraint Expert para uma versão mais avançada, incorporando uma nova condição de execução de trade para complementar as já existentes. À medida que avançamos, continuaremos explorando a aplicação prática do MQL5 no desenvolvimento algorítmico, fornecendo a você percepções mais detalhadas e técnicas acionáveis.
preview
Redes neurais em trading: Agente com memória multinível (Conclusão)

Redes neurais em trading: Agente com memória multinível (Conclusão)

Damos continuidade ao desenvolvimento do framework FinMem, que utiliza abordagens de memória multinível, imitando os processos cognitivos humanos. Isso permite que o modelo não apenas processe dados financeiros complexos de forma eficiente, mas também se adapte a novos sinais, aumentando significativamente a precisão e a efetividade das decisões de investimento em mercados altamente dinâmicos.
preview
Como funções de cem anos atrás podem atualizar suas estratégias de trading

Como funções de cem anos atrás podem atualizar suas estratégias de trading

Neste artigo, vamos falar sobre as funções de Rademacher e Walsh. Vamos explorar formas de aplicar essas funções na análise de séries temporais financeiras, além de considerar diferentes maneiras de usá-las no trading.