Indicador do modelo CAPM no mercado Forex
Adaptação do modelo clássico CAPM para o mercado cambial Forex em MQL5. O indicador calcula a rentabilidade esperada e o prêmio de risco com base na volatilidade histórica. Os indicadores aumentam nos picos e nas depressões, refletindo os princípios fundamentais de precificação. Aplicação prática para estratégias contra a tendência e de seguimento de tendência, levando em conta a dinâmica da relação entre risco e rentabilidade em tempo real. Inclui o aparato matemático e a implementação técnica.
Redes neurais em trading: Extração eficiente de características para classificação precisa (Construção de objetos)
Mantis é uma ferramenta universal para análise profunda de séries temporais, escalável de forma flexível para quaisquer cenários financeiros. Saiba como a combinação de patching, convoluções locais e atenção cruzada permite obter uma interpretação de alta precisão dos padrões de mercado.
Negociamos opções sem opções (Parte 1): Fundamentos da teoria e emulação por meio de ativos subjacentes
O artigo descreve uma variante de emulação de opções por meio do ativo subjacente, implementada na linguagem de programação MQL5. São comparadas as vantagens e desvantagens da abordagem escolhida em relação às opções reais negociadas em bolsa, usando como exemplo o mercado futuro FORTS da bolsa de Moscou MOEX e a corretora de criptomoedas Bybit.
Redes neurais em trading: Extração eficiente de características para classificação precisa (Conclusão)
O framework Mantis transforma séries temporais complexas em tokens informativos e serve como uma base confiável para um Agente de trading inteligente, pronto para operar em tempo real.
Indicador de previsão ARIMA em MQL5
Neste artigo, criamos um indicador de previsão ARIMA em MQL5. É analisado como o modelo ARIMA forma previsões, sua aplicabilidade ao mercado Forex e ao mercado de ações em geral. Também é explicado o que é a autorregressão AR, de que forma os modelos autorregressivos são usados para previsão e como funciona o mecanismo de autorregressão.
Redes neurais em trading: Extração eficiente de características para classificação precisa (Mantis)
Conheça o Mantis, um modelo fundamental leve para classificação de séries temporais baseado em Transformer, com pré-treinamento contrastivo e atenção híbrida, que garantem precisão recorde e escalabilidade.
Criando um Painel de Administração de Trading em MQL5 (Parte IX): Organização de Código (I)
Esta discussão aprofunda-se nos desafios encontrados ao trabalhar com grandes bases de código. Vamos explorar as melhores práticas para organização de código em MQL5 e implementar uma abordagem prática para aprimorar a legibilidade e a escalabilidade do código-fonte do nosso Painel de Administração de Trading. Além disso, buscamos desenvolver componentes de código reutilizáveis que possam potencialmente beneficiar outros desenvolvedores no desenvolvimento de seus algoritmos. Continue lendo e participe da discussão.
Engenharia de Recursos com Python e MQL5 (Parte III): Ângulo do Preço (2) Coordenadas Polares
Neste artigo, fazemos nossa segunda tentativa de converter as variações nos níveis de preço em qualquer mercado em uma variação correspondente de ângulo. Desta vez, selecionamos uma abordagem matematicamente mais sofisticada do que a escolhida em nossa primeira tentativa, e os resultados que obtivemos sugerem que a mudança de abordagem pode ter sido a decisão correta Junte-se a nós hoje, enquanto discutimos como podemos usar coordenadas polares para calcular o ângulo formado pelas variações nos níveis de preço, de forma significativa, independentemente de qual mercado você esteja analisando.
Redes neurais em trading: Identificação de anomalias no domínio da frequência (CATCH)
O framework CATCH combina a transformada de Fourier e o patching de frequência para a identificação precisa de anomalias de mercado, inacessíveis aos métodos tradicionais. Neste trabalho, examinaremos como essa abordagem revela padrões ocultos nos dados financeiros.
EA autoaprendente com rede neural baseada em matriz de estados
EA autoaprendente com rede neural baseada em matriz de estados. Combinamos cadeias de Markov com uma rede neural multicamadas MLP, escrita com a biblioteca ALGLIB MQL5. Como cadeias de Markov e redes neurais podem ser combinadas para a previsão no Forex?
Redes neurais em trading: Generalização de séries temporais sem vínculo com dados (Conclusão)
Este artigo permitirá que você veja como o Mamba4Cast transforma a teoria em um algoritmo de trading funcional e prepara o terreno para seus próprios experimentos. Não perca a oportunidade de obter um espectro completo de conhecimento e inspiração para o desenvolvimento da sua própria estratégia.
Redes neurais em trading: Generalização de séries temporais sem vinculação a dados (Módulos básicos do modelo)
Damos continuidade ao conhecimento do framework Mamba4Cast. E hoje vamos nos aprofundar na implementação prática das abordagens propostas. O Mamba4Cast foi criado não para um longo aquecimento em cada nova série temporal, mas para entrar em operação de forma instantânea. Graças à ideia de Zero-Shot Forecasting, o modelo é capaz de fornecer imediatamente previsões de alta qualidade em dados reais sem retreinamento e sem ajuste fino de hiperparâmetros.
Redes neurais em trading: generalização de séries temporais sem vinculação a dados (Mamba4Cast)
Neste artigo, conhecemos o framework Mamba4Cast e analisamos em detalhe um de seus componentes-chave, a codificação posicional baseada em marcas temporais. É mostrado como é formada a incorporação temporal levando em conta a estrutura de calendário dos dados.
Modelo matricial de previsão baseado em cadeia de Markov
Criamos um modelo matricial de previsão baseado em uma cadeia de Markov. O que são cadeias de Markov e como uma cadeia de Markov pode ser usada para trading no Forex.
Automatizando Estratégias de Trading em MQL5 (Parte 5): Desenvolvendo a Estratégia Adaptive Crossover RSI Trading Suite
Neste artigo, desenvolvemos o Sistema Adaptive Crossover RSI Trading Suite, que utiliza cruzamentos de médias móveis de 14 e 50 períodos para geração de sinais, confirmados por um filtro de RSI de 14 períodos. O sistema inclui um filtro de dias de negociação, setas de sinal com anotações e um painel em tempo real para monitoramento. Essa abordagem garante precisão e adaptabilidade no trading automatizado.
Construindo Expert Advisors Auto-Otimizáveis em MQL5 (Parte 5): Regras de Negociação Auto Adaptativas
As melhores práticas, que definem como usar um indicador com segurança, nem sempre são fáceis de seguir. Condições de mercado calmas podem, surpreendentemente, produzir leituras no indicador que não se qualificam como um sinal de negociação, levando à perda de oportunidades para traders algorítmicos. Este artigo irá sugerir uma solução potencial para esse problema, à medida que discutimos como construir aplicações de negociação capazes de adaptar suas regras de negociação aos dados de mercado disponíveis.
Redes neurais em trading: Previsão de séries temporais com o auxílio da decomposição modal adaptativa (Conclusão)
O artigo analisa a adaptação e a implementação prática do framework ACEFormer por meio do MQL5 no contexto do trading algorítmico. São apresentados as principais decisões arquiteturais, as particularidades do treinamento e os resultados dos testes do modelo com dados reais.
Automatizando Estratégias de Trading em MQL5 (Parte 4): Construindo um Sistema de Recuperação por Zonas em Múltiplos Níveis
Neste artigo, desenvolvemos um Sistema de Recuperação por Zonas em Múltiplos Níveis em MQL5 que utiliza o RSI para gerar sinais de negociação. Cada instância de sinal é adicionada dinamicamente a uma estrutura de array, permitindo que o sistema gerencie múltiplos sinais simultaneamente dentro da lógica de Zone Recovery. Por meio dessa abordagem, demonstramos como lidar de forma eficaz com cenários complexos de gerenciamento de trades, mantendo ao mesmo tempo um design de código escalável e robusto.
Construindo Expert Advisors Auto-Otimizáveis em MQL5 (Parte 4): Dimensionamento Dinâmico de Posição
Empregar com sucesso o trading algorítmico exige aprendizado contínuo e interdisciplinar. No entanto, a gama infinita de possibilidades pode consumir anos de esforço sem gerar resultados tangíveis. Para lidar com isso, propomos uma estrutura que introduz complexidade de forma gradual, permitindo que os traders refinem suas estratégias de maneira iterativa, em vez de dedicar tempo indefinido a resultados incertos.
Desenvolvimento do Kit de Ferramentas de Análise de Price Action (Parte 9): Fluxo Externo
Este artigo explora uma nova dimensão de análise utilizando bibliotecas externas especificamente projetadas para análises avançadas. Essas bibliotecas, como o pandas, fornecem ferramentas poderosas para processar e interpretar dados complexos, permitindo que os traders obtenham percepções mais profundas sobre a dinâmica do mercado. Ao integrar essas tecnologias, podemos reduzir a lacuna entre dados brutos e estratégias acionáveis. Junte-se a nós enquanto estabelecemos as bases dessa abordagem inovadora e desbloqueamos o potencial de combinar tecnologia com expertise em trading.
Redes neurais em trading: Previsão de séries temporais com o auxílio da decomposição modal adaptativa (ACEFormer)
Propomos conhecer a arquitetura ACEFormer, uma solução moderna que combina a eficiência da atenção probabilística com a decomposição adaptativa de séries temporais. O material será útil para quem busca um equilíbrio entre desempenho computacional e precisão de previsão nos mercados financeiros.
Trading de arbitragem no Forex: sistema de negociação matricial para retorno ao valor justo com limitação de risco
O artigo contém uma descrição detalhada do algoritmo de cálculo de taxas cruzadas, a visualização da matriz de desequilíbrios e recomendações para a configuração ideal dos parâmetros MinDiscrepancy e MaxRisk para uma negociação eficiente. O sistema calcula automaticamente o "valor justo" de cada par de moedas por meio de taxas cruzadas, gerando sinais de compra em desvios negativos e de venda em desvios positivos.
Introdução ao MQL5 (Parte 11): Um guia para iniciantes sobre como trabalhar com indicadores incorporados no MQL5 (II)
Descubra como desenvolver um Expert Advisor (EA) em MQL5 usando múltiplos indicadores como RSI, MA e Oscilador Estocástico para detectar divergências ocultas de alta e de baixa. Aprenda a implementar um gerenciamento de risco eficaz e a automatizar negociações com exemplos detalhados e código-fonte totalmente comentado para fins educacionais!
Redes neurais em trading: Otimização de LSTM para fins de previsão de séries temporais multidimensionais (Conclusão)
Continuamos a implementação do framework DA-CG-LSTM, que propõe métodos inovadores de análise e previsão de séries temporais. O uso de CG-LSTM e do mecanismo de atenção dupla permite identificar com maior precisão tanto dependências de longo prazo quanto de curto prazo nos dados, o que é especialmente útil para o trabalho com mercados financeiros.
Integração de APIs de Corretoras com Expert Advisors usando MQL5 e Python
Neste artigo, discutiremos a implementação do MQL5 em parceria com o Python para realizar operações relacionadas à corretora. Imagine ter um Expert Advisor (EA) em execução contínua hospedado em um VPS, executando negociações em seu nome. Em determinado momento, a capacidade do EA de gerenciar fundos torna-se fundamental. Isso inclui operações como adicionar fundos à sua conta de negociação e iniciar retiradas. Nesta discussão, iremos esclarecer as vantagens e a implementação prática desses recursos, garantindo a integração perfeita do gerenciamento de fundos à sua estratégia de negociação. Fique atento!
Redes neurais em trading: Otimização de LSTM para fins de previsão de séries temporais multivariadas (DA-CG-LSTM)
Este artigo apresenta o algoritmo DA-CG-LSTM, que propõe novas abordagens para análise e previsão de séries temporais. Você verá como mecanismos de atenção inovadores e a flexibilidade da arquitetura contribuem para o aumento da precisão das previsões.
Previsão de barras Renko com a ajuda de IA CatBoost
Como usar barras Renko junto com IA? Vamos analisar o Renko-trading no Forex com precisão de previsões de até 59.27%. Exploraremos as vantagens das barras Renko para filtrar o ruído do mercado, entenderemos por que indicadores de volume são mais importantes do que padrões de preço e como configurar o tamanho ideal do bloco Renko para EURUSD. Um guia passo a passo para integrar CatBoost, Python e MetaTrader 5 para criar seu próprio sistema de previsão Renko Forex. Perfeito para traders que desejam ir além da análise técnica tradicional.
Trading por pares: negociação algorítmica com auto-otimização baseada na diferença de pontuação Z
Neste artigo, analisaremos o que é o trading por pares e como ocorre a negociação baseada em correlações. Também criaremos um EA para automatizar o trading por pares e adicionaremos a possibilidade de otimização automática desse algoritmo de negociação com base em dados históricos. Além disso, dentro do projeto, aprenderemos a calcular as divergências entre dois pares por meio da pontuação Z.
Redes neurais em trading: Ator–Diretor–Crítico (Conclusão)
O framework Actor–Director–Critic representa uma evolução da arquitetura clássica de aprendizado por agentes. O artigo apresenta uma experiência prática de sua implementação e adaptação às condições dos mercados financeiros.
Critérios de tendência. Conclusão
Neste artigo, analisaremos as particularidades da aplicação prática de alguns critérios de tendência. Além disso, tentaremos desenvolver alguns novos critérios. A principal atenção será dada à eficácia desses critérios na análise de dados de mercado e no trading.
Redes neurais em trading: Detecção de anomalias no domínio da frequência (Conclusão)
Damos continuidade ao trabalho de implementação das abordagens do framework CATCH, que combina a transformada de Fourier e o mecanismo de patching em frequência, possibilitando a detecção precisa de anomalias de mercado. Nesta etapa, concluímos a realização da nossa própria versão das abordagens propostas e conduziremos testes com os novos modelos utilizando dados históricos reais.
Gerenciamento de riscos (Parte 5): Integração do sistema de gerenciamento de riscos ao EA
Neste artigo, implementaremos o sistema de gerenciamento de risco desenvolvido em publicações anteriores e adicionaremos o indicador Order Blocks apresentado em outros artigos. Além disso, será realizado um backtest para comparar os resultados com a aplicação do sistema de gerenciamento de risco e para avaliar o impacto do risco dinâmico.
Desenvolvimento de um sistema de monitoramento de entradas de swing (EA)
À medida que o ano se aproxima do fim, traders de longo prazo costumam refletir sobre o histórico do mercado para analisar seu comportamento e tendências, visando projetar potenciais movimentos futuros. Neste artigo, exploraremos o desenvolvimento de um Expert Advisor (EA) de monitoramento de entradas de longo prazo usando MQL5. O objetivo é abordar o desafio das oportunidades de negociação de longo prazo perdidas devido ao trading manual e à ausência de sistemas automatizados de monitoramento. Usaremos um dos pares mais negociados como exemplo para estruturar e desenvolver nossa solução de forma eficaz.
Automatização de estratégias de trading com MQL5 (Parte 13): Criação de um algoritmo de negociação para o padrão "Cabeça e Ombros"
Neste artigo, automatizaremos o padrão "Cabeça e Ombros" em MQL5. Analisaremos sua arquitetura, implementaremos um EA para sua detecção e negociação, e testaremos os resultados no histórico. Esse processo revela um algoritmo de negociação prático, que pode ser aprimorado.
Automatizando Estratégias de Negociação em MQL5 (Parte 3): O Sistema Zone Recovery RSI para Gestão Dinâmica de Operações
Neste artigo, criamos um Sistema EA Zone Recovery RSI em MQL5, utilizando sinais de RSI para acionar operações e uma estratégia de recuperação para gerenciar perdas. Implementamos uma classe "ZoneRecovery" para automatizar as entradas de operações, a lógica de recuperação e o gerenciamento de posições. O artigo conclui com insights de backtesting para otimizar a performance e aprimorar a eficácia do EA.
Construindo um Modelo de Restrição de Tendência com Candlestick (Parte 10): Golden Cross e Death Cross Estratégicos (EA)
Você sabia que as estratégias Golden Cross e Death Cross, baseadas no cruzamento de médias móveis, são alguns dos indicadores mais confiáveis para identificar tendências de mercado de longo prazo? Um Golden Cross sinaliza uma tendência de alta quando uma média móvel mais curta cruza acima de uma média mais longa, enquanto o Death Cross indica uma tendência de baixa quando a média mais curta cruza abaixo. Apesar de sua simplicidade e eficácia, aplicar essas estratégias manualmente frequentemente leva a oportunidades perdidas ou negociações atrasadas.
Automatizando Estratégias de Trading em MQL5 (Parte 2): O Sistema Kumo Breakout com Ichimoku e Awesome Oscillator
Neste artigo, criamos um Expert Advisor (EA) que automatiza a estratégia Kumo Breakout utilizando o indicador Ichimoku Kinko Hyo e o Awesome Oscillator. Percorremos o processo de inicialização dos identificadores de indicadores, detecção das condições de breakout e codificação das entradas e saídas automatizadas de trades. Além disso, implementamos trailing stops e lógica de gerenciamento de posição para aprimorar o desempenho e a adaptabilidade do EA às condições de mercado.
Dominando Operações de Arquivos em MQL5: Do I/O Básico à Construção de um Leitor CSV Personalizado
Este artigo aborda técnicas essenciais de manipulação de arquivos em MQL5, abrangendo logs de operações, processamento de CSV e integração de dados externos. Ele oferece tanto compreensão conceitual quanto orientação prática de codificação. Os leitores aprenderão a construir uma classe personalizada de importação CSV passo a passo, adquirindo habilidades práticas para aplicações reais.
Desenvolvimento de ferramentas para análise do movimento de preços (Parte 7): Expert Advisor Signal Pulse
Libere o potencial da análise multitimeframe com o Signal Pulse, um EA em MQL5 que combina as Bandas de Bollinger e o Oscilador Estocástico para fornecer sinais de negociação precisos com alta probabilidade de ocorrência. Descubra como implementar essa estratégia e visualizar de forma eficiente oportunidades de compra e venda usando setas. O EA é ideal para traders que buscam aprimorar suas decisões por meio de análise automática em vários timeframes.
Construa EAs auto-otimizáveis em MQL5 (Parte 3): Acompanhamento dinâmico de tendência e retorno à média
Os mercados financeiros geralmente são classificados como estando em consolidação (movimento lateral) ou em tendência. Essa visão estática do mercado pode facilitar o trading no curto prazo. No entanto, ela está desconectada da realidade do mercado. Neste artigo, vamos tentar compreender melhor como exatamente os mercados financeiros transitam entre esses dois possíveis regimes e vamos tentar compreender melhor como exatamente os mercados financeiros transitam entre esses dois possíveis regimes e como podemos utilizar esse novo entendimento do comportamento do mercado para ganhar confiança em nossas estratégias de trading algorítmico.