Redes neurais de maneira fácil (Parte 95): Redução do consumo de memória em modelos Transformer
Os modelos baseados na arquitetura Transformer demonstram alta eficiência, mas seu uso é dificultado pelos altos custos de recursos, tanto na fase de treinamento quanto durante a utilização prática. Neste artigo, proponho conhecer algoritmos que permitem reduzir o uso de memória por esses modelos.
Redes neurais em trading: Transformer para nuvens de pontos (Pointformer)
Neste artigo, falaremos sobre os algoritmos que utilizam métodos de atenção para resolver tarefas de detecção de objetos em nuvens de pontos. A detecção de objetos em nuvens de pontos é de grande importância para diversas aplicações práticas.
Redes neurais em trading: Injeção de informação global em canais independentes (InjectTST)
A maioria dos métodos modernos de previsão de séries temporais multimodais utiliza a abordagem de canais independentes, ignorando a dependência natural entre os diferentes canais de uma série temporal. Para melhorar a eficiência dos modelos, é fundamental utilizar equilibradamente duas abordagens: canais independentes e mistos.
Técnicas do MQL5 Wizard que você deve conhecer (Parte 38): Bandas de Bollinger
As Bandas de Bollinger são um indicador do tipo Envelope muito comum, utilizado por muitos traders para abrir e fechar operações manualmente. Vamos examinar esse indicador considerando o máximo possível dos diferentes sinais que ele pode gerar e ver como eles podem ser utilizados em um Expert Advisor montado com o wizard.
Redes neurais de maneira fácil (Parte 76): explorando diversos modos de interação (Multi-future Transformer)
Neste artigo, continuamos o tema de previsão do movimento de preços. E convido você a conhecer a arquitetura do Multi-future Transformer. A ideia principal é decompor a distribuição multimodal do futuro em várias distribuições unimodais, permitindo modelar eficientemente diversos modos de interação entre os agentes na cena.
Redes neurais em trading: Transformer vetorial hierárquico (Conclusão)
Continuaremos a explorar o método Transformer Vetorial Hierárquico. Neste artigo, concluiremos a construção do modelo, realizando seu treinamento e teste em dados históricos reais.
Funcionalidades do assistente MQL5 que você precisa conhecer (Parte 11): Paredes numéricas
As paredes numéricas (Number Walls) são uma variante do registrador de deslocamento com realimentação linear (Linear Shift Back Registers), que avalia previamente sequências para previsibilidade verificando a convergência. Vamos ver como essas ideias podem ser usadas no MQL5.
Técnicas do MQL5 Wizard que você deve conhecer (Parte 20): Regressão Simbólica
A Regressão Simbólica é uma forma de regressão que começa com poucas ou nenhuma suposição sobre qual seria o modelo subjacente que mapeia os conjuntos de dados em estudo. Embora possa ser implementada por Métodos Bayesianos ou Redes Neurais, analisamos como uma implementação com Algoritmos Genéticos pode ajudar a personalizar uma classe de sinal especialista utilizável no MQL5 Wizard.
Redes neurais de maneira fácil (Parte 70): melhorando a política usando operadores de forma fechada (CFPI)
Neste artigo, propomos explorar um algoritmo que utiliza operadores de melhoria de política de forma fechada para otimizar as ações do Agente em um ambiente off-line.
Redes neurais de maneira fácil (Parte 69): restrição de política comportamental com base na densidade de dados off-line (SPOT)
No aprendizado off-line, utilizamos um conjunto de dados fixo, e isso não abrange toda a variedade do ambiente. Durante o processo de treinamento, nosso Agente pode gerar ações fora desse conjunto. Sem feedback do ambiente, a precisão dessas ações é duvidosa. Manter a política do Agente dentro do conjunto de treinamento se torna importante para confiar nos resultados. Vamos falar mais sobre isso aqui neste artigo.
Utilizando o modelo de Machine Learning CatBoost como Filtro para Estratégias de Seguimento de Tendência
CatBoost é um poderoso modelo de machine learning baseado em árvores que se especializa em tomada de decisão com base em features estacionárias. Outros modelos baseados em árvores como XGBoost e Random Forest compartilham características semelhantes em termos de robustez, capacidade de lidar com padrões complexos e interpretabilidade. Esses modelos têm uma ampla gama de usos, desde análise de features até gestão de risco. Neste artigo, vamos percorrer o procedimento de utilização de um modelo CatBoost treinado como filtro para uma estratégia clássica de seguimento de tendência com cruzamento de médias móveis.
Técnicas do MQL5 Wizard que você deve conhecer (Parte 17): Negociação Multimoedas
Negociar com múltiplas moedas não está disponível por padrão quando um expert advisor é montado através do assistente. Examinamos dois hacks possíveis que os traders podem fazer ao tentar testar suas ideias com mais de um símbolo ao mesmo tempo.
Desenvolvendo um EA multimoeda (Parte 20): Organizando o pipeline de etapas de otimização automática de projetos (I)
Já criamos diversos componentes que facilitam o processo de otimização automática. Durante sua criação, seguimos a ciclicidade tradicional: desde a criação do código funcional mínimo até a refatoração e a obtenção de um código melhorado. Agora é hora de organizar nossa base de dados, que também é um componente-chave no sistema que estamos criando.
Redes neurais em trading: Ator–Diretor–Crítico (Actor–Director–Critic)
Propomos conhecer o framework Actor-Director-Critic, que combina aprendizado hierárquico e uma arquitetura com múltiplos componentes para criar estratégias de trading adaptativas. Neste artigo, analisamos em detalhe como o uso do Diretor para classificar as ações do Ator ajuda a otimizar decisões de trading de forma eficiente e a aumentar a robustez dos modelos nas condições dos mercados financeiros.
Redes neurais de maneira fácil (Parte 74): previsão adaptativa de trajetórias
Proponho a você conhecer um método bastante eficaz de previsão de trajetórias multiagentes, que é capaz de se adaptar a diferentes condições ambientais.
Técnicas do MQL5 Wizard que você deve conhecer (Parte 19): Inferência Bayesiana
A inferência bayesiana é a adoção do Teorema de Bayes para atualizar hipóteses de probabilidade à medida que novas informações são disponibilizadas. Isso intuitivamente leva à adaptação na análise de séries temporais, então veremos como podemos usar isso na construção de classes personalizadas, não apenas para o sinal, mas também para gerenciamento de dinheiro e trailing-stops.
Construindo um Modelo de Restrição de Tendência com Candlestick (Parte 9): Consultor Especializado em Múltiplas Estratégias (II)
O número de estratégias que podem ser integradas em um Expert Advisor é praticamente ilimitado. No entanto, cada estratégia adicional aumenta a complexidade do algoritmo. Ao incorporar múltiplas estratégias, um Expert Advisor pode se adaptar melhor às condições variáveis do mercado, potencialmente aumentando sua lucratividade. Hoje, exploraremos como implementar em MQL5 uma das estratégias mais conhecidas desenvolvidas por Richard Donchian, enquanto continuamos a aprimorar a funcionalidade do nosso Trend Constraint Expert.
Negociando com o Calendário Econômico MQL5 (Parte 4): Implementando Atualizações de Notícias em Tempo Real no Painel
Este artigo aprimora nosso painel do Calendário Econômico implementando atualizações de notícias em tempo real para manter as informações de mercado atuais e acionáveis. Integramos técnicas de busca de dados ao vivo no MQL5 para atualizar os eventos no painel continuamente, melhorando a capacidade de resposta da interface. Essa atualização garante que possamos acessar as últimas notícias econômicas diretamente do painel, otimizando as decisões de negociação com base nos dados mais recentes.
Redes neurais de maneira fácil (Parte 72): previsão de trajetórias em condições de ruído
A qualidade da previsão de estados futuros desempenha um papel importante no método Goal-Conditioned Predictive Coding, com o qual nos familiarizamos no artigo anterior. Neste artigo, quero apresentar a vocês um algoritmo capaz de aumentar significativamente a qualidade da previsão em ambientes estocásticos, que incluem os mercados financeiros.
Redes neurais em trading: Análise da situação do mercado usando o transformador de padrões
Ao analisarmos a situação do mercado com nossos modelos, o elemento-chave é a vela. No entanto, sabe-se há muito tempo que os padrões de velas podem ajudar a prever movimentos futuros de preço. Neste artigo, apresentaremos um método que permite integrar essas duas abordagens.
Criação de um painel de administração de trading em MQL5 (Parte V): Autenticação de dois fatores (2FA)
Este artigo aborda o aumento da segurança do painel de administração de trading, atualmente em desenvolvimento. Vamos explorar como integrar o MQL5 a uma nova estratégia de segurança, utilizando a API do Telegram para autenticação de dois fatores (2FA). O artigo traz informações valiosas sobre a aplicação de MQL5 para reforçar medidas de segurança. Além disso, veremos a função MathRand, focando em sua funcionalidade e na forma como pode ser usada de forma eficiente em nosso sistema de segurança.
Redes neurais em trading: Agente com memória multinível (Conclusão)
Damos continuidade ao desenvolvimento do framework FinMem, que utiliza abordagens de memória multinível, imitando os processos cognitivos humanos. Isso permite que o modelo não apenas processe dados financeiros complexos de forma eficiente, mas também se adapte a novos sinais, aumentando significativamente a precisão e a efetividade das decisões de investimento em mercados altamente dinâmicos.
Como funções de cem anos atrás podem atualizar suas estratégias de trading
Neste artigo, vamos falar sobre as funções de Rademacher e Walsh. Vamos explorar formas de aplicar essas funções na análise de séries temporais financeiras, além de considerar diferentes maneiras de usá-las no trading.
Redes neurais em trading: Dupla clusterização de séries temporais (Conclusão)
Damos continuidade à implementação dos métodos propostos pelos autores do framework DUET, que apresenta uma abordagem inovadora para a análise de séries temporais, combinando clusterização temporal e de canais para revelar padrões ocultos nos dados analisados.
Técnicas do MQL5 Wizard que você deve conhecer (Parte 28): GANs revisitados com uma introdução às taxas de aprendizado
A Taxa de Aprendizado é um tamanho de passo em direção a um objetivo de treinamento nos processos de treinamento de muitos algoritmos de aprendizado de máquina. Examinamos o impacto que seus diversos cronogramas e formatos podem ter no desempenho de uma Rede Generativa Adversária, um tipo de rede neural que já havíamos analisado em um artigo anterior.
Reimaginando Estratégias Clássicas (Parte VI): Análise de Múltiplos Tempos Gráficos
Nesta série de artigos, revisitamos estratégias clássicas para ver se podemos melhorá-las usando IA. No artigo de hoje, vamos examinar a popular estratégia de análise de múltiplos tempos gráficos para avaliar se a estratégia seria aprimorada com IA.
Redes neurais em trading: Transformer contrastivo de padrões
O Transformer contrastivo de padrões realiza a análise de situações de mercado, tanto no nível de velas individuais quanto no de padrões completos. Isso contribui para aprimorar a modelagem das tendências de mercado. Além disso, o uso do aprendizado contrastivo para alinhar as representações das velas e dos padrões leva à autorregulação e ao aumento da precisão das previsões.
Automatizando Estratégias de Trading em MQL5 (Parte 2): O Sistema Kumo Breakout com Ichimoku e Awesome Oscillator
Neste artigo, criamos um Expert Advisor (EA) que automatiza a estratégia Kumo Breakout utilizando o indicador Ichimoku Kinko Hyo e o Awesome Oscillator. Percorremos o processo de inicialização dos identificadores de indicadores, detecção das condições de breakout e codificação das entradas e saídas automatizadas de trades. Além disso, implementamos trailing stops e lógica de gerenciamento de posição para aprimorar o desempenho e a adaptabilidade do EA às condições de mercado.
Funcionalidades do assistente MQL5 que você precisa conhecer (Parte 10): RBM não convencional
As máquinas de Boltzmann restritas (Restrictive Boltzmann Machines, RBM) são, em um nível básico, uma rede neural de duas camadas capaz de realizar classificação não supervisionada através da redução de dimensionalidade. Vamos usar seus princípios básicos e ver o que acontece se a desenharmos e a treinarmos de forma não convencional. Será que conseguiremos obter um filtro de sinais útil?
Redes neurais em trading: Otimização de LSTM para fins de previsão de séries temporais multivariadas (DA-CG-LSTM)
Este artigo apresenta o algoritmo DA-CG-LSTM, que propõe novas abordagens para análise e previsão de séries temporais. Você verá como mecanismos de atenção inovadores e a flexibilidade da arquitetura contribuem para o aumento da precisão das previsões.
Construindo um Modelo de Restrição de Tendência de Candlestick (Parte 8): Desenvolvimento do Expert Advisor (II)
Pense em um Expert Advisor independente. Anteriormente, discutimos um Expert Advisor baseado em indicador que também contava com um script independente para desenhar a geometria de risco e recompensa. Hoje, discutiremos a arquitetura de um Expert Advisor em MQL5, que integra todos os recursos em um único programa.
Redes neurais em trading: Transformer contrativo de padrões (Conclusão)
No último artigo da série, analisamos o framework Atom-Motif Contrastive Transformer (AMCT), que utiliza aprendizado contrastivo para identificar padrões-chave em todos os níveis, desde os elementos básicos até estruturas complexas. Neste artigo, continuamos a implementar as abordagens do AMCT com recursos do MQL5.
Redes neurais em trading: Representação adaptativa de grafos (NAFS)
Apresentamos o método NAFS (Node-Adaptive Feature Smoothing), uma abordagem não paramétrica para criar representações de nós que não requer o treinamento de parâmetros. O NAFS extrai as características de cada nó considerando seus vizinhos e, então, combina essas características de forma adaptativa para formar a representação final.
Técnicas do MQL5 Wizard que você deve conhecer (Parte 50): Awesome Oscillator
O Awesome Oscillator é outro indicador de Bill Williams que é usado para medir o momentum. Ele pode gerar múltiplos sinais e, portanto, revisamos estes com base em padrões, como em artigos anteriores, aproveitando as classes e a montagem do MQL5 wizard.
Algoritmos de otimização populacionais: objetos de busca multissociais artificiais (artificial Multi-Social search Objects, MSO)
Continuação do artigo anterior como desenvolvimento da ideia de grupos sociais. No novo artigo, explora-se a evolução dos grupos sociais utilizando algoritmos de movimentação e memória. Os resultados ajudarão a entender a evolução dos sistemas sociais e aplicá-los na otimização e busca de soluções.
Criando um Expert Advisor Integrado MQL5-Telegram (Parte 7): Análise de Comandos para Automação de Indicadores em Gráficos
Neste artigo, exploramos como integrar comandos do Telegram com MQL5 para automatizar a adição de indicadores em gráficos de negociação. Cobrimos o processo de análise (parsing) dos comandos dos usuários, sua execução no MQL5 e o teste do sistema para garantir uma negociação baseada em indicadores de forma fluida.
Redes neurais em trading: Segmentação guiada (Conclusão)
Damos continuidade ao trabalho iniciado no artigo anterior sobre a construção do framework RefMask3D utilizando MQL5. Esse framework foi desenvolvido para um estudo aprofundado da interação multimodal e da análise de características em nuvens de pontos, com posterior identificação do objeto-alvo com base em uma descrição fornecida em linguagem natural.
Ganhe uma Vantagem Sobre Qualquer Mercado (Parte III): Índice de Gastos com Cartões Visa
No mundo dos big data, existem milhões de conjuntos de dados alternativos que têm o potencial de aprimorar nossas estratégias de negociação. Nesta série de artigos, vamos ajudá-lo a identificar os conjuntos de dados públicos mais informativos.
Gerenciamento de riscos (Parte 2): Implementação do cálculo de lotes na interface gráfica
Neste artigo, analisaremos como aprimorar e aplicar de forma mais eficiente os conceitos apresentados no artigo anterior, utilizando as poderosas bibliotecas de elementos gráficos de controle do MQL5. Conduzirei você passo a passo pelo processo de criação de uma interface gráfica totalmente funcional, explicando o plano de projeto subjacente, bem como o propósito e o princípio de funcionamento de cada método empregado. Além disso, ao final do artigo testaremos o painel criado, a fim de confirmar seu correto funcionamento e sua aderência aos objetivos estabelecidos.
Técnicas do MQL5 Wizard que você deve conhecer (Parte 23): CNNs
As Redes Neurais Convolucionais são outro algoritmo de aprendizado de máquina que tende a se especializar em decompor conjuntos de dados multidimensionais em partes constituintes principais. Vamos ver como isso é normalmente alcançado e explorar uma possível aplicação para traders em outra classe de sinais do MQL5 Wizard.