Construindo um Modelo de Restrição de Tendências de Candlestick (Parte 3): Detectando mudanças nas tendências ao usar este sistema
Este artigo explora como a divulgação de notícias econômicas, o comportamento dos investidores e vários fatores podem influenciar as reversões de tendências de mercado. Inclui uma explicação em vídeo e prossegue incorporando código MQL5 ao nosso programa para detectar reversões de tendência, nos alertar e tomar as ações apropriadas com base nas condições de mercado. Isso se baseia em artigos anteriores da série.
Redes neurais de maneira fácil (Parte 73): AutoBots para previsão de movimentos de preço
Continuamos a análise dos algoritmos de aprendizado de modelos de previsão de trajetórias. E neste artigo, proponho que você conheça o método chamado “AutoBots”.
Negociando com o Calendário Econômico do MQL5 (Parte 3): Adicionando Filtros de Moeda, Importância e Tempo
Neste artigo, implementamos filtros no painel do Calendário Econômico do MQL5 para refinar a exibição dos eventos de notícias por moeda, importância e tempo. Primeiro, estabelecemos critérios de filtro para cada categoria e depois os integramos ao painel para exibir apenas os eventos relevantes. Por fim, garantimos que cada filtro seja atualizado dinamicamente para fornecer aos traders insights econômicos focados e em tempo real.
Desenvolvendo um EA multimoeda (Parte 6): Automatizando a seleção de um grupo de instâncias
Depois de otimizar uma estratégia de negociação, obtemos conjuntos de parâmetros que facilitam a criação de várias instâncias dessa estratégia, todas integradas em um único Expert Advisor. Antes, fazíamos isso manualmente, mas agora vamos tentar automatizar esse processo.
Escrevemos o primeiro modelo de caixa de vidro (Glass Box) em Python e MQL5
Os modelos de aprendizado de máquina são difíceis de interpretar, e entender o motivo pelo qual os modelos não atendem às nossas expectativas pode ajudar muito a alcançar o resultado desejado ao usar esses métodos modernos. Sem um entendimento abrangente do funcionamento interno do modelo, pode ser difícil identificar erros que prejudicam o desempenho. Nesse processo, podemos dedicar tempo a criar funções que não impactam na qualidade da previsão. No final, por melhor que seja o modelo, perdemos todos os seus principais benefícios devido a nossos próprios erros. Felizmente, existe uma solução complexa, mas bem desenvolvida, que permite ver claramente o que está acontecendo sob o capô do modelo.
Como criar um diário de negociações com MetaTrader e Google Sheets
Crie um diário de negociações usando o MetaTrader e o Google Sheets! Você aprenderá como sincronizar seus dados de negociação via HTTP POST e recuperá-los usando requisições HTTP. Ao final, você terá um diário de negociações que ajudará a acompanhar suas operações de forma eficaz e eficiente.
Modelo GRU de Deep Learning com Python para ONNX com EA, e comparação entre modelos GRU e LSTM
Vamos guiá-lo por todo o processo de DL com Python para criar um modelo GRU em ONNX, culminando na criação de um Expert Advisor (EA) projetado para negociação, e, posteriormente, comparando o modelo GRU com o modelo LSTM.
Técnicas do MQL5 Wizard que você deve conhecer (Parte 15): Máquinas de Vetores de Suporte com o Polinômio de Newton
Máquinas de Vetores de Suporte classificam dados com base em classes predefinidas, explorando os efeitos de aumentar sua dimensionalidade. É um método de aprendizado supervisionado que é bastante complexo, dado seu potencial para lidar com dados multidimensionais. Neste artigo, consideramos como uma implementação muito básica de dados bidimensionais pode ser feita de maneira mais eficiente com o Polinômio de Newton ao classificar a ação do preço.
Técnicas do MQL5 Wizard que você deve conhecer (Parte 26): Médias Móveis e o Exponente de Hurst
O Exponente de Hurst é uma medida de quanto uma série temporal se autocorrela ao longo do tempo. Entende-se que ele captura as propriedades de longo prazo de uma série temporal e, portanto, tem um peso significativo na análise de séries temporais, mesmo fora do contexto econômico/financeiro. No entanto, focamos em seu potencial benefício para os traders ao analisar como essa métrica poderia ser combinada com médias móveis para construir um sinal potencialmente robusto.
Reimaginando Estratégias Clássicas: Petróleo Bruto
Neste artigo, revisitamos uma estratégia clássica de negociação de petróleo bruto com o objetivo de aprimorá-la, utilizando algoritmos de aprendizado de máquina supervisionado. Vamos construir um modelo de mínimos quadrados para prever os preços futuros do petróleo Brent, com base na diferença entre os preços do Brent e do WTI. Nosso objetivo é identificar um indicador líder de futuras mudanças nos preços do Brent.
Redes neurais em trading: Modelos híbridos de sequências de grafos (GSM++)
Os modelos híbridos de sequências de grafos (GSM++) unem os pontos fortes de diferentes arquiteturas, garantindo alta precisão na análise de dados e otimização do custo computacional. Esses modelos se adaptam de forma eficiente a dados de mercado dinâmicos, melhorando a representação e o processamento das informações financeiras.
Redes neurais de maneira fácil (Parte 66): Problemáticas da pesquisa em treinamento off-line
O treinamento de modelos em modo off-line é realizado com dados de uma amostra de treinamento previamente preparada. Isso nos oferece várias vantagens, mas também comprime significativamente as informações sobre o ambiente em relação às dimensões da amostra de treinamento. Isso, por sua vez, limita as possibilidades de pesquisa. Neste artigo, quero apresentar um método que permite enriquecer a amostra de treinamento com dados o mais diversificados possível.
Reimaginando Estratégias Clássicas (Parte II): Rompimentos das Bandas de Bollinger
Este artigo explora uma estratégia de trading que integra a Análise Discriminante Linear (LDA) com Bandas de Bollinger, aproveitando previsões de zonas categóricas para gerar sinais estratégicos de entrada no mercado.
Ciclos e trading
Este artigo é dedicado ao uso de ciclos no trading. Nele, vamos tentar entender como construir uma estratégia de negociação com base em modelos cíclicos.
Estratégia de trading "Captura de Liquidez" (Liquidity Grab)
A estratégia de captura de liquidez é um componente-chave do Smart Money Concepts (SMC), que visa identificar e aproveitar as ações dos participantes institucionais no mercado. Ela envolve mirar áreas de alta liquidez, como zonas de suporte ou resistência, onde ordens de grande volume podem provocar um movimento de preço antes que o mercado retome sua tendência. Este artigo explica em detalhes o conceito de captura de liquidez e descreve o processo de desenvolvimento de um EA para a estratégia de captura de liquidez em MQL5.
Redes neurais de maneira fácil (Parte 79): consultas agregadas de características (FAQ)
No artigo anterior, nos familiarizamos com um dos métodos de detecção de objetos em imagens. No entanto, o processamento de imagens estáticas é um pouco diferente do trabalho com séries temporais dinâmicas, como aquelas relacionadas à dinâmica dos preços que estamos analisando. Neste artigo, quero apresentar a você o método de detecção de objetos em vídeo, que é mais relevante para a nossa tarefa atual.
Desenvolvendo um EA multimoeda (Parte 17): Preparação adicional para o trading real
Atualmente, nosso EA utiliza um banco de dados para obter as strings de inicialização de instâncias individuais de estratégias de trading. No entanto, o banco de dados é bastante volumoso e contém muitas informações desnecessárias para a operação real do EA. Tentaremos garantir o funcionamento do EA sem a necessidade de conexão obrigatória ao banco de dados.
Redes neurais de maneira fácil (Parte 40): Abordagens para usar Go-Explore em uma grande quantidade de dados
Neste artigo, discutiremos a aplicação do algoritmo Go-Explore ao longo de um período de treinamento prolongado, uma vez que uma estratégia de seleção aleatória de ações pode não levar a uma passagem lucrativa à medida que o tempo de treinamento aumenta.
Engenharia de Recursos com Python e MQL5 (Parte II): Ângulo de Preço
Existem muitas postagens no Fórum MQL5 pedindo ajuda para calcular a inclinação das mudanças de preço. Este artigo demonstrará uma forma possível de calcular o ângulo formado pelas variações de preço em qualquer mercado que você deseje negociar. Além disso, responderemos se desenvolver esse novo recurso vale o esforço e o tempo adicionais investidos. Vamos explorar se a inclinação do preço pode melhorar a precisão de algum dos nossos modelos de IA ao prever o par USDZAR no M1.
Redes neurais de maneira fácil (Parte 63): pré-treinamento do transformador de decisões não supervisionado (PDT)
Continuamos nossa análise, desta vez, explorando a família de transformadores de decisão. Em trabalhos anteriores, já observamos que o treinamento do transformador subjacente à arquitetura desses métodos é bastante desafiador e requer uma grande quantidade de dados de treinamento rotulados. Neste artigo, consideramos um algoritmo para usar trajetórias não rotuladas com o objetivo de pré-treinar modelos.
Técnicas do MQL5 Wizard que você deve conhecer (Parte 37): Regressão por Processo Gaussiano com Núcleos Lineares e de Matérn
Os núcleos lineares são a matriz mais simples de seu tipo usada em aprendizado de máquina para regressão linear e máquinas de vetor de suporte. O núcleo de Matérn, por outro lado, é uma versão mais versátil da Função de Base Radial que analisamos em um artigo anterior, e é hábil em mapear funções que não são tão suaves quanto o RBF pressupõe. Construímos uma classe de sinal personalizada que utiliza ambos os núcleos para prever condições de compra e venda.
MQL5 Trading Toolkit (Parte 3): Desenvolvimento de uma biblioteca EX5 para gerenciamento de ordens pendentes
Você aprenderá como desenvolver e implementar uma biblioteca EX5 abrangente para ordens pendentes em seu código ou projetos MQL5. Vamos analisar como importar e implementar essa biblioteca como parte de um painel de negociação ou interface gráfica do usuário (GUI). O painel de ordens do EA permitirá aos usuários abrir, acompanhar e excluir ordens pendentes por número mágico diretamente na interface gráfica exibida na janela do gráfico.
Automatização de estratégias de trading com MQL5 (Parte 1): Sistema Profitunity (Trading Chaos de Bill Williams)
Neste artigo exploraremos o sistema Profitunity de autoria de Bill Williams, destrinchando seus principais componentes e sua abordagem única para operar em condições caóticas de mercado. Demonstramos para o leitor a implementação da estratégia na linguagem de programação MQL5, com ênfase na automatização dos principais indicadores e sinais de entrada/saída. Finalmente, testaremos e otimizaremos a estratégia, analisando em detalhes sua eficácia em diferentes cenários de mercado.
Negociando com o Calendário Econômico do MQL5 (Parte 5): Aprimorando o Painel com Controles Responsivos e Botões de Filtro
Neste artigo, criamos botões para filtros de pares de moedas, níveis de importância, filtros de tempo e uma opção de cancelamento para melhorar o controle do painel. Esses botões são programados para responder dinamicamente às ações do usuário, permitindo uma interação contínua. Também automatizamos seu comportamento para refletir mudanças em tempo real no painel. Isso aprimora a funcionalidade geral, a mobilidade e a responsividade do painel.
Redes neurais em trading: Detecção Adaptativa de Anomalias de Mercado (DADA)
Apresentamos o DADA, um framework inovador para identificação de anomalias em séries temporais. Ele ajuda a distinguir oscilações aleatórias de desvios suspeitos. Ao contrário dos métodos tradicionais, o DADA se ajusta de maneira flexível a diferentes conjuntos de dados. Em vez de usar um nível fixo de compressão, ele testa vários níveis e escolhe o mais adequado para cada situação.
Redes neurais de maneira fácil (Parte 97): Treinamento do modelo usando o MSFformer
Ao estudar diferentes arquiteturas de construção de modelos, temos dado pouca atenção ao processo de treinamento dos modelos. Neste artigo, tentarei preencher essa lacuna.
Redes neurais de maneira fácil (Parte 68): Otimização off-line de políticas baseada em preferências
Desde os primeiros artigos sobre aprendizado por reforço, a gente sempre falou de duas coisas: como explorar o ambiente e definir a função de recompensa. Os artigos mais recentes foram dedicados à exploração durante o aprendizado off-line. Neste aqui, quero apresentar a você um algoritmo em que os autores resolveram deixar de lado a função de recompensa.
De Novato a Especialista: A Jornada Essencial no Comércio MQL5
Desbloqueie seu potencial! Você está cercado de oportunidades. Descubra 3 segredos principais para iniciar sua jornada MQL5 ou levá-la para o próximo nível. Vamos mergulhar na discussão de dicas e truques para iniciantes e profissionais.
Reimaginando Estratégias Clássicas (Parte V): Análise de Múltiplos Símbolos no USDZAR
Nesta série de artigos, revisitamos estratégias clássicas para verificar se podemos melhorá-las usando IA. No artigo de hoje, examinaremos uma estratégia popular de análise de múltiplos símbolos utilizando uma cesta de ativos correlacionados. Focaremos no par de moedas exótico USDZAR.
Integre seu próprio LLM no EA (Parte 3): Treinando seu próprio LLM com CPU
Com o rápido desenvolvimento da inteligência artificial hoje em dia, os modelos de linguagem (LLMs) são uma parte importante da IA, então devemos pensar em como integrar LLMs poderosos ao nosso trading algorítmico. Para a maioria das pessoas, é difícil ajustar esses modelos poderosos de acordo com suas necessidades, implantá-los localmente e depois aplicá-los ao trading algorítmico. Esta série de artigos adotará uma abordagem passo a passo para alcançar esse objetivo.
Redes neurais em trading: Transformer parâmetro-eficiente com atenção segmentada (PSformer)
Apresentamos o novo framework PSformer, que adapta a arquitetura do Transformer puro para resolver tarefas de previsão de séries temporais multivariadas. O framework é baseado em duas inovações principais: o mecanismo de compartilhamento de parâmetros (PS) e a atenção aos segmentos espaço-temporais (SegAtt).
Adicionando um LLM personalizado a um robô investidor (Parte 5): Desenvolvimento e teste de estratégia de trading com LLM (I) - Ajuste fino
Os modelos de linguagem (LLMs) são uma parte importante da inteligência artificial que evolui rapidamente. E para aproveitar isso devemos pensar em como integrar LLMs avançados em nossa negociação algorítmica Muitos acham desafiador ajustar esses modelos de acordo com suas necessidades, implantá-los localmente e, logo, aplicá-los à negociação algorítmica. Esta série de artigos explorará uma abordagem passo a passo para alcançar esse objetivo.
Redes neurais de maneira fácil (Parte 81): Análise da dinâmica dos dados considerando o contexto (CCMR)
Em trabalhos anteriores, sempre avaliamos o estado atual do ambiente. No entanto, a dinâmica das mudanças dos indicadores sempre ficou "nos bastidores". Neste artigo, quero apresentar a vocês um algoritmo que permite avaliar a mudança direta dos dados entre dois estados consecutivos do ambiente.
Desenvolvendo um EA multimoeda (Parte 15): Preparando o EA para o trading real
À medida que nos aproximamos de um EA pronto, é necessário prestar atenção em questões secundárias na etapa de teste da estratégia de trading, mas que se tornam importantes ao migrar para o trading real.
Criando um Painel Administrativo de Negociação em MQL5 (Parte II): Aprimorando a Responsividade e Mensagens Rápidas
Neste artigo, vamos aprimorar a responsividade do Painel Administrativo que criamos anteriormente. Além disso, vamos explorar a importância das mensagens rápidas no contexto de sinais de negociação.
Simplificando a negociação com base em notícias (Parte 4): Aumentando o desempenho
Neste artigo, serão apresentados métodos para melhorar o desempenho do EA no testador de estratégias, além da implementação de um código para dividir o horário dos eventos de notícias em categorias por hora. O acesso a esses eventos será permitido apenas no horário especificado para cada um. Isso permite que o EA gerencie operações de maneira eficiente com base nos eventos, tanto em condições de alta quanto de baixa volatilidade.
Redes neurais de maneira fácil (Parte 91): previsão na área de frequência (FreDF)
Continuamos a explorar a análise e previsão de séries temporais na área de frequência. E nesta matéria, apresentaremos um novo método de previsão nessa área, que pode ser adicionado a muitos dos algoritmos que já estudamos anteriormente.
Redes neurais de maneira fácil (Parte 75): aumentando a produtividade dos modelos de previsão de trajetórias
Os modelos que estamos criando estão se tornando cada vez maiores e mais complexos. Com isso, aumentam os custos não apenas para o treinamento, mas também para a operação. Além disso, muitas vezes nos deparamos com situações em que o tempo de tomada de decisão é crítico. E, por isso, voltamos nossa atenção para métodos de otimização de desempenho dos modelos sem perder qualidade.
Redes neurais em trading: Transformer com codificação relativa
O aprendizado autossupervisionado pode ser uma forma eficaz de analisar grandes volumes de dados brutos não rotulados. O principal fator de sucesso é a adaptação dos modelos às particularidades dos mercados financeiros, o que melhora o desempenho dos métodos tradicionais. Este artigo apresentará um mecanismo alternativo de atenção, que permite levar em conta dependências relativas e inter-relações entre os dados brutos.
Técnicas do MQL5 Wizard que você deve conhecer (Parte 25): Testes e Operações em Múltiplos Timeframes
Por padrão, estratégias baseadas em múltiplos timeframes não podem ser testadas em Expert Advisors montados pelo assistente devido à arquitetura de código MQL5 utilizada nas classes de montagem. Exploramos uma possível solução para essa limitação em estratégias que utilizam múltiplos timeframes em um estudo de caso com a média móvel quadrática.