MQL5における統計とデータの分析に関する記事

icon

数学的なモデルと確率の法則は多くのトレーダーにとって興味深いでしょう。数学はテクニカル指標の基本であり、トレーディングの結果を分析しストラテジーを開発するためには統計が必要です。

あいまいなロジック、デジタルフィルタ、マーケットプロファイル、コホーネンマップ、ニューラルガス、その他のトレーディングに使用できる多くのツールについてご覧ください。

新しい記事を追加
最新 | ベスト
MetaTraderプログラムを簡単かつ迅速に開発するためのライブラリ(第3部)成行注文と取引のコレクション、検索と並び替え
MetaTraderプログラムを簡単かつ迅速に開発するためのライブラリ(第3部)成行注文と取引のコレクション、検索と並び替え

MetaTraderプログラムを簡単かつ迅速に開発するためのライブラリ(第3部)成行注文と取引のコレクション、検索と並び替え

最初の部分では、MetaTrader 5とMetaTrader 4プラットフォーム用のプログラムの開発を単純化するための大規模なクロスプラットフォームライブラリの作成を始めました。さらに、履歴の注文と取引の収集を実装しました。次のステップは、コレクションリスト内の注文、取引、ポジションの便利な選択と並び替えのためのクラスを作成することです。Engineという基本ライブラリオブジェクトを実装し、成行注文とポジションのコレクションをライブラリに追加します。
いくつかの都市伝説の検証『アジアセッションでの取引のように、一日の取引が動く』
いくつかの都市伝説の検証『アジアセッションでの取引のように、一日の取引が動く』

いくつかの都市伝説の検証『アジアセッションでの取引のように、一日の取引が動く』

いくつかの都市伝説、ここでは『アジアセッションでの取引のように、一日の取引が動く』というものを検証していきたいと思います。
一連の取引に対するリスク評価続編
一連の取引に対するリスク評価続編

一連の取引に対するリスク評価続編

本稿では、前稿で提案した概念を開発し、さらに考察します。収率分布の問題や、統計的規則性のプロットと研究についても記述します。
アルゴリズムトレードにおける Kohonen ニューラルネットワークの実用的利用 パートI ツール
アルゴリズムトレードにおける Kohonen ニューラルネットワークの実用的利用 パートI ツール

アルゴリズムトレードにおける Kohonen ニューラルネットワークの実用的利用 パートI ツール

本稿では、MetaTrader5 で Kohonen マップを使用します。 改善および拡張されたクラスは、アプリケーションタスクを解決するためのツールになります。
MetaTraderプログラムを簡単かつ迅速に開発するためのライブラリ(第21部): 取引クラス - 基本クロスプラットフォーム取引オブジェクト
MetaTraderプログラムを簡単かつ迅速に開発するためのライブラリ(第21部): 取引クラス - 基本クロスプラットフォーム取引オブジェクト

MetaTraderプログラムを簡単かつ迅速に開発するためのライブラリ(第21部): 取引クラス - 基本クロスプラットフォーム取引オブジェクト

この記事では、取引クラスを新しいライブラリセクションとして開発し始めます。さらに、MetaTrader 5およびMetaTrader 4プラットフォーム向けの統合基本取引オブジェクトの開発を検討します。サーバにリクエストを送信する場合、このような取引オブジェクトにより、検証済みの正しい取引リクエストパラメータがサーバに渡されます。
HTML レポートを使用したトレード結果の分析
HTML レポートを使用したトレード結果の分析

HTML レポートを使用したトレード結果の分析

MetaTrader5 プラットフォームには、トレーディングレポートを保存する機能のほか、EAのテストと最適化レポートがあります。 最適化レポートは XML で保存することができますが、トレードとテストのレポートは、XLSX と HTML の2つの形式で保存することができます。 この記事では、html テストレポート、XML 最適化レポート、および html トレードヒストリーレポートについて説明します。
preview
知っておくべきMQL5ウィザードのテクニック(第05回):マルコフ連鎖

知っておくべきMQL5ウィザードのテクニック(第05回):マルコフ連鎖

マルコフ連鎖は、金融をはじめとする様々な分野で、時系列データのモデル化や予測に利用できる強力な数学的ツールです。金融の時系列モデル化や予測では、株価や為替レートなど、金融資産の時間的変化をモデル化するためにマルコフ連鎖がよく使われます。マルコフ連鎖モデルの大きな利点の1つは、そのシンプルさと使いやすさにあります。
preview
エキスパートアドバイザーが失敗する理由の分析

エキスパートアドバイザーが失敗する理由の分析

この記事では、通貨データの分析を示して、エキスパートアドバイザーが特定の時間領域で良好なパフォーマンスを示し他の領域でパフォーマンスが低下する理由をよりよく理解します。
MetaTraderプログラムを簡単かつ迅速に開発するためのライブラリ(第23部): 基本取引クラス - パラメータ有効性の検証
MetaTraderプログラムを簡単かつ迅速に開発するためのライブラリ(第23部): 基本取引クラス - パラメータ有効性の検証

MetaTraderプログラムを簡単かつ迅速に開発するためのライブラリ(第23部): 基本取引クラス - パラメータ有効性の検証

本稿では、取引クラスの不正な取引注文パラメータ値に対する制御と取引イベントの音声通知において開発を続けています。
preview
ニューラルネットワークが簡単に(第5回): OPENCLでのマルチスレッド計算

ニューラルネットワークが簡単に(第5回): OPENCLでのマルチスレッド計算

ニューラルネットワークの実装のいくつかのタイプについては、これまで説明してきました。 これまで考慮されたネットワークでは、各ニューロンに対して同じ操作が繰り返されます。 さらに論理的な進展としては、ニューラルネットワークの学習プロセスを高速化するために、現代の技術が提供するマルチスレッドコンピューティング機能を利用することです。 可能な実装の1つは、この記事で説明しています。
トレーダーの作業における統計的分布の役割
トレーダーの作業における統計的分布の役割

トレーダーの作業における統計的分布の役割

本稿は、理論的統計的分布に連携するクラスについて述べた拙著『MQL5 における投擲的可能性』の続編です。われわれには理論的基盤があるので、現実のデータ設定に進み、こ基盤を情報的に利用していきたいと思います。
preview
知っておくべきMQL5ウィザードのテクニック(第01回):回帰分析

知っておくべきMQL5ウィザードのテクニック(第01回):回帰分析

今日のトレーダーは哲学者であり、ほとんどの場合(意識的かどうかにかかわらず...)新しいアイデアを探し、試し、変更するか破棄するかを選択します。これは、かなりの労力を要する探索的プロセスです。トレーダーの時間とミスを避ける必要性は明らかに重視されます。この連載では、MQL5ウィザードがトレーダーの主力であるべきであることを示します。なぜでしょうか。MQL5ウィザードを使用すれば、新しいアイデアを組み立てることで時間を節約できるだけでなく、コーディングの重複によるミスを大幅に減らすことができるため、最終的に、取引の哲学のいくつかの重要な分野にエネルギーを注ぐことができるからです。
preview
トランスダクション・アクティブ機械学習におけるスロープブースト

トランスダクション・アクティブ機械学習におけるスロープブースト

本記事では、実データを活用したアクティブな機械学習手法について考察するとともに、その長所と短所について考察していきます. おそらく、いくつかの方法が有用であるとわかるでしょうし、機械学習モデルのアーセナルにインクルードするでしょう. トランスダクションは、サポートベクターマシン(SVM)の共同発明者であるVladimir Vapnik氏が紹介しています.
より優れたプログラマー(第02部): MQL5プログラマーとして成功するためにやめなければいけない5つのこと
より優れたプログラマー(第02部): MQL5プログラマーとして成功するためにやめなければいけない5つのこと

より優れたプログラマー(第02部): MQL5プログラマーとして成功するためにやめなければいけない5つのこと

この記事は、プログラミングのキャリアを向上させたい人にとって必読です。本連載は、どんなに経験が豊富な読者でも最高のプログラマーになれることを目的としています。議論されたアイデアは、MQL5プログラミングの初心者だけでなくプロにも役立ちます。
preview
ニューラルネットワークが簡単に(第4回): リカレントネットワーク

ニューラルネットワークが簡単に(第4回): リカレントネットワーク

これまでニューラルネットワークの勉強を続けてきました。 この記事では、ニューラルネットワークのもう一つのタイプであるリカレントネットワークについて考えてみます。 このタイプは、MetaTrader 5の取引プラットフォームで価格チャートで表現される時系列を使用するために提案されています。
マウンテンチャートとアイスバーグチャート
マウンテンチャートとアイスバーグチャート

マウンテンチャートとアイスバーグチャート

MetaTrader 5プラットフォームに新しいチャートタイプを追加するというアイデアはいかがでしょうか。このプラットフォームには他のプラットフォームにあるものがいくつかないという声もあります。しかし、実際のところ、MetaTrader 5は他の多くのプラットフォームではできないこと(少なくとも簡単にはできないこと)ができる、非常に実用的なプラットフォームです。
自己適応アルゴリズムの開発(第II部): 効率の向上
自己適応アルゴリズムの開発(第II部): 効率の向上

自己適応アルゴリズムの開発(第II部): 効率の向上

この記事では、以前に作成したアルゴリズムの柔軟性を向上させることでトピックの開発を続けます。アルゴリズムは、分析期間内のローソク足の数の増加または上昇/下降ローソク足超過率のしきい値の増加によって、より安定しました。分析のためにより大きなサンプルサイズを設定するかより高いローソク足の超過率を設定して、妥協する必要がありました。
運動継続モデル-チャート上での検索と実行統計
運動継続モデル-チャート上での検索と実行統計

運動継続モデル-チャート上での検索と実行統計

この記事では、運動継続モデルの1つをプログラムによって定義します。 この主なアイデアは、2つの波の定義です(メインと補正) 極値点については、フラクタルだけでなく、 "潜在的な " フラクタル-まだフラクタルとして形成されていない極値点を適用します。
MetaTraderプログラムを簡単かつ迅速に開発するためのライブラリ(第22部): 取引クラス - 基本取引クラス、制限の検証
MetaTraderプログラムを簡単かつ迅速に開発するためのライブラリ(第22部): 取引クラス - 基本取引クラス、制限の検証

MetaTraderプログラムを簡単かつ迅速に開発するためのライブラリ(第22部): 取引クラス - 基本取引クラス、制限の検証

この記事では、ライブラリベースの取引クラスの開発を開始し、最初のバージョンに取引操作を行うためのアクセス許可の初期検証を追加します。さらに、基本取引クラスの機能とコンテンツをわずかながら拡張します。
Jeremy Scott - MQL5「マーケット」販売の成功者
Jeremy Scott - MQL5「マーケット」販売の成功者

Jeremy Scott - MQL5「マーケット」販売の成功者

MQL5.community におけるニックネーム Johnnypasado ことJeremy Scott 氏は MQL5 「マーケット」サービスにプロダクツを提供することで有名になりました。Jeremy は「マーケット」ですでに何千ドルも得ていますが、それで終わるわけではありません。将来の百万長者を詳しく知り MQL5 「マーケット」の販売者に対してなにかアドバイスを得ようと思いました。
preview
パターン検索への総当たり攻撃アプローチ(第III部): 新しい水平線

パターン検索への総当たり攻撃アプローチ(第III部): 新しい水平線

本稿では、総当たり攻撃のトピックを続けます。プログラムアルゴリズムに市場分析の新しい機会を導入することで分析速度を高め、結果の品質を向上します。新しい追加により、このアプローチ内でグローバルパターンの最高品質で表示できるようになります。
DoEasyライブラリの時系列(第35部): バーオブジェクトと銘柄の時系列リスト
DoEasyライブラリの時系列(第35部): バーオブジェクトと銘柄の時系列リスト

DoEasyライブラリの時系列(第35部): バーオブジェクトと銘柄の時系列リスト

本稿は、簡単で迅速なプログラム開発のためのDoEasyライブラリの作成に関する新しいシリーズの始まりとなります。本稿では、銘柄の時系列データにアクセスして操作するためのライブラリ機能を実装します。メインおよび拡張時系列バーデータを格納するバーオブジェクトを作成し、オブジェクトの検索と並び替えを容易にするために、時系列リストにバーオブジェクトを配置します。
preview
ONNXをマスターする:MQL5トレーダーにとってのゲームチェンジャー

ONNXをマスターする:MQL5トレーダーにとってのゲームチェンジャー

機械学習モデルを交換するための強力なオープン標準形式であるONNXの世界に飛び込んでみましょう。ONNXを活用することでMQL5のアルゴリズム取引にどのような変革がもたらされ、トレーダーが最先端のAIモデルをシームレスに統合し、戦略を新たな高みに引き上げることができるようになるかがわかります。クロスプラットフォーム互換性の秘密を明らかにし、MQL5取引の取り組みでONNXの可能性を最大限に引き出す方法を学びましょう。ONNXをマスターするためのこの包括的なガイドで取引ゲームを向上させましょう。
ファジー理論を使用しインディケータを作成する簡単な例
ファジー理論を使用しインディケータを作成する簡単な例

ファジー理論を使用しインディケータを作成する簡単な例

本稿はファイナンシャルマーケット分析にファジー理論の概念を実用的に適用することに特化しています。エンベロープインディケータ上で2つのファジールールに基づくインディケータ生成シグナルの例を提供します。作成されたインディケータは複数のインディケータバッファを使用します。7個のバッファを計算に、5個のバッファをチャート表示に、2個をカラーバッファとします。
MetaTraderプログラムを簡単かつ迅速に開発するためのライブラリ(第24部): 未決取引リクエストの使用 - 初期実装(ポジションのオープン)
MetaTraderプログラムを簡単かつ迅速に開発するためのライブラリ(第24部): 未決取引リクエストの使用 - 初期実装(ポジションのオープン)

MetaTraderプログラムを簡単かつ迅速に開発するためのライブラリ(第24部): 未決取引リクエストの使用 - 初期実装(ポジションのオープン)

本稿では、注文の値にいくつかのデータを格納し、マジックナンバーを配置し、保留中リクエストの実装を開始します。概念を確認するために、サーバエラーを受信して、待機後に繰り返しリクエストを送信する必要がある際にマーケットポジションを開くための最初のテスト保留中リクエストを作成しましょう。
DoEasyライブラリでのその他のクラス(第71部): チャットオブジェクトコレクションイベント
DoEasyライブラリでのその他のクラス(第71部): チャットオブジェクトコレクションイベント

DoEasyライブラリでのその他のクラス(第71部): チャットオブジェクトコレクションイベント

本稿では、いくつかのチャートオブジェクトイベント(銘柄チャートとチャートサブウィンドウの追加/削除、およびチャートウィンドウの指標の追加/削除/変更)を追跡する機能を作成します。
トレードシステムの評価 - 参入、退出と取引における一般の有効性
トレードシステムの評価 - 参入、退出と取引における一般の有効性

トレードシステムの評価 - 参入、退出と取引における一般の有効性

トレードシステムの有効性と利益性を決定できる多数の尺度がある。しかし、トレーダーは常にどのシステムでも試したいと考えている。この記事はどのようにして有効性の尺度に基づいた統計が MetaTrader 5 のプラットフォームに使えるかを教えるものである。 これは取引による統計の解釈を、S.V.Bulashev(ブラシェフ)による著作"Statistika dlya traderov"(トレーダーのための統計) の記述に矛盾しないものに変換するクラスを含んでいる。また最適化のためのカスタムファンクションの例も含んでいる。
トレードにおけるOLAPの適用(パート3):トレード戦略の開発の相場分析
トレードにおけるOLAPの適用(パート3):トレード戦略の開発の相場分析

トレードにおけるOLAPの適用(パート3):トレード戦略の開発の相場分析

この記事では、トレードに適用される OLAP テクノロジを引き続き取り扱います。 最初の 2 つの記事で紹介した機能を拡張します。 今回は、クオートの運用分析について検討します。シェイプセレクタ 集計されたヒストリーデータに基づいて、トレード戦略に関する仮説を打ち出し、テストします。 この記事では、バーパターンとアダプティブトレードを研究するためのEAを紹介します。
preview
ONNX統合の課題を克服する

ONNX統合の課題を克服する

ONNXは、異なるプラットフォーム間で複雑なAIコードを統合するための素晴らしいツールです。ただし、この素晴らしいツールを最大限に活用するためにはいくつかの課題に対処する必要があります。この記事では、読者が直面する可能性のある一般的な問題と、それを軽減する方法について説明します。
貨幣価格変動に対するマクロ経済データの影響の回帰分析
貨幣価格変動に対するマクロ経済データの影響の回帰分析

貨幣価格変動に対するマクロ経済データの影響の回帰分析

本稿ではマクロ経済統計に対する重回帰分析のアプリケーションについか考察します。また通貨ペア EURUSD の例に基づく為替レートにおけるその統計の影響評価の洞察も提供します。その評価により初心者トレーダーにも利用可能となるファンダメンタル分析の自動化ができます。
preview
データサイエンスと機械学習(第24回):通常のAIモデルによるFX時系列予測

データサイエンスと機械学習(第24回):通常のAIモデルによるFX時系列予測

外国為替市場において、過去を知らずに将来のトレンドを予測することは非常に困難です。過去の値を考慮して将来の予測をおこなうことができる機械学習モデルは非常に少ないです。この記事では、市場に勝つために古典的な(非時系列)人工知能モデルを使用する方法について説明します。
preview
データサイエンスと機械学習(第26回):時系列予測における究極の戦い - LSTM対GRUニューラルネットワーク

データサイエンスと機械学習(第26回):時系列予測における究極の戦い - LSTM対GRUニューラルネットワーク

前回の記事では、データの長期的な依存関係をうまく捉えられないにもかかわらず、利益を上げる戦略を構築できる単純RNNについて説明しました。この記事では、LSTM (Long-Short Term Memory)とGRU (Gated Recurrent Unit)の両方について説明します。この2つは、単純RNNの欠点を克服し、それを凌駕するために紹介されました。
preview
取引のための組合せ論と確率論(第I部):基本

取引のための組合せ論と確率論(第I部):基本

この連載では、確率論の実用的応用を見つけて、取引と価格設定のプロセスの説明を試みます。最初の記事では、組合せ論と確率の基礎を調べ、確率論の枠組みでフラクタルを適用する方法の最初の例を分析します。
MetaTraderプログラムを簡単かつ迅速に開発するためのライブラリ(第2部)過去の注文と取引のコレクション
MetaTraderプログラムを簡単かつ迅速に開発するためのライブラリ(第2部)過去の注文と取引のコレクション

MetaTraderプログラムを簡単かつ迅速に開発するためのライブラリ(第2部)過去の注文と取引のコレクション

最初の部分では、MetaTrader 5とMetaTrader 4プラットフォーム用のプログラムの開発を単純化するための大規模なクロスプラットフォームライブラリの作成を始めました。過去の注文と取引、および市場の注文とポジションに関するデータを格納するための基本オブジェクトであるCOrder抽象オブジェクトを作成しました。ここでは、口座履歴データをコレクションに格納するために必要なすべてのオブジェクトを開発します。
preview
データサイエンスと機械学習(第04回):現在の株式市場の暴落を予測する

データサイエンスと機械学習(第04回):現在の株式市場の暴落を予測する

今回は、米国経済のファンダメンタルズに基づいて、私たちのロジスティックモデルを使って株式市場の暴落の予測を試みます。NETFLIXとAPPLEが私たちが注目する銘柄です、2019年と2020年の過去の市場の暴落を使って、モデルが現在の破滅と暗雲でどのように機能するか見てみましょう。
preview
価格変動モデルとその主な規定(第1回)。最もシンプルなモデルバージョンとその応用

価格変動モデルとその主な規定(第1回)。最もシンプルなモデルバージョンとその応用

この記事は、数学的に厳密な値動きと市場機能の理論の基礎を提供するものです。現在に至るまで、数学的に厳密な値動き理論は存在しません。その代わりに、「あるパターンの後に、ある方向に価格が動く」という経験則に基づいた仮定で対処する必要がありました。もちろん、これらの仮定は統計にも理論にも裏付けられていません。
preview
クラスター分析(第I部):インジケーターラインの傾きをマスターする

クラスター分析(第I部):インジケーターラインの傾きをマスターする

クラスター分析は、人工知能の最も重要な要素の1つです。この記事では、指標の傾きのクラスター分析を適用して、市場が横ばいであるかトレンドに従っているのかを判断するためのしきい値の取得を試みます。
preview
MQL5での行列およびベクトル演算

MQL5での行列およびベクトル演算

行列とベクトルがMQL5に導入され、数学的な解決策による効率的な操作が可能になりました。これらの新しい型は、数学表記に近い簡潔でわかりやすいコードを作成するための組み込みメソッドを提供します。配列は広範な機能を提供しますが、行列の方がはるかに効率的である場合が多くあります。
preview
知っておくべきMQL5ウィザードのテクニック(第06回):フーリエ変換

知っておくべきMQL5ウィザードのテクニック(第06回):フーリエ変換

ジョセフ・フーリエによって導入されたフーリエ変換は、複雑なデータの波動点を単純な構成波に分解する手段です。この記事では、トレーダーにとって有益なこの機能を見ていきます。
トレードにおけるOLAPの適用(パート2):インタラクティブな多次元データ分析結果の可視化
トレードにおけるOLAPの適用(パート2):インタラクティブな多次元データ分析結果の可視化

トレードにおけるOLAPの適用(パート2):インタラクティブな多次元データ分析結果の可視化

この記事では、OLAP技術を使用して口座ヒストリーとトレードレポートの処理に設計されたMQLプログラム用のインタラクティブなグラフィカルインタフェースの作成について考察します。 視覚的な結果を得るために、最大化可能でスケーラブルなウィンドウ、ラバーコントロールの適応レイアウト、および図を表示するための新しいコントロールを使用します。 ビジュアライゼーション関数を提供するために、座標軸に沿った変数の選択と、集計関数、ダイアグラムタイプ、並べ替えオプションの選択を含むGUIを実装します。