
古典的な戦略を再構築する(第11回):移動平均クロスオーバー(II)
移動平均とストキャスティクスオシレーターは、トレンドに従う取引シグナルを生成するために使用できます。ただし、これらのシグナルは価格変動が発生した後にのみ観察されます。AIを使用することで、テクニカルインジケーターに内在するこの遅れを効果的に克服できます。この記事では、既存の取引戦略を改善できるような、完全に自律的なAI搭載のエキスパートアドバイザー(EA)を作成する方法を説明します。最も古い取引戦略であっても、改善することは可能です。

DoEasy - サービス関数(第3回):アウトサイドバーパターン
本記事では、DoEasyライブラリにおけるアウトサイドバーのプライスアクションパターンを開発し、価格パターン管理へのアクセス手法を最適化します。あわせて、ライブラリのテスト中に判明したエラーや不具合の修正もおこないます。

不一致問題(Disagreement Problem):AIにおける複雑性の説明可能性を深く掘り下げる
説明可能性という波乱の海を航海しながら、人工知能(AI)の謎の核心に飛び込みましょう。モデルがその内部構造を隠す領域において、私たちの探求は、機械学習の回廊にこだまする「不一致問題」を明らかにします。

MetaTrader 5用のMQTTクライアントの開発:TDDアプローチ(最終回)
この記事は、MQTT 5.0プロトコルのネイティブMQL5クライアントの開発ステップを説明する連載の最終回です。ライブラリはまだ製品化されていませんが、この部分では、他の証券会社から入手したティック(またはレート)でカスタム銘柄を更新するためにクライアントを使用します。ライブラリの現在の状況、MQTT 5.0プロトコルに完全に準拠するために足りないもの、可能なロードマップ、そしてその開発をフォローし貢献する方法についての詳細は、この記事の最後をご覧ください。

知っておくべきMQL5ウィザードのテクニック(第14回):STFによる多目的時系列予測
データのモデリングに「空間」と「時間」の両方の測定基準を使用する空間的時間的融合は、主にリモートセンシングや、私たちの周囲をよりよく理解するための他の多くの視覚ベースの活動で有用です。発表された論文のおかげで、トレーダーへの可能性を検証することで、その活用に斬新なアプローチを取ります。

知っておくべきMQL5ウィザードのテクニック(第15回):ニュートンの多項式を用いたサポートベクトルマシン
サポートベクトルマシンは、データの次元を増やす効果を調べることで、あらかじめ定義されたクラスに基づいてデータを分類します。これは教師あり学習法で、多次元のデータを扱う可能性を考えるとかなり複雑です。この記事では、2次元データの非常に基本的な実装であるニュートンの多項式が、価格とアクションを分類する際にどのように効率的に実行できるかを検討します。

知っておくべきMQL5ウィザードのテクニック(第16回):固有ベクトルによる主成分分析
データ分析における次元削減技術である主成分分析について、固有値とベクトルを用いてどのように実装できるかを考察します。いつものように、MQL5ウィザードで使用可能なExpertSignalクラスのプロトタイプの開発を目指します。

知っておくべきMQL5ウィザードのテクニック(第24回):移動平均
移動平均は、ほとんどのトレーダーが使用し、理解している非常に一般的な指標です。この記事では、MQL5ウィザードで組み立てられたエキスパートアドバイザー(EA)の中で、あまり一般的ではないかもしれない使用例を探っていきます。

古典的な戦略を再構築する(第10回):AIはMACDを強化できるか?
MACDインジケーターを経験的に分析し、インジケーターを含む戦略にAIを適用することで、EURUSDの予測精度が向上するかどうかをテストします。さらに、インジケーター自体が価格より予測しやすいのか、またインジケーターの値が将来の価格水準を予測できるのかも同時に評価します。これにより、AI取引戦略にMACDを統合することに投資する価値があるかどうかを判断するための情報を提供します。

知っておくべきMQL5ウィザードのテクニック(第45回):モンテカルロ法による強化学習
モンテカルロは、ウィザードで組み立てられたエキスパートアドバイザー(EA)における実装を検討するために取り上げる、強化学習の4つ目の異なるアルゴリズムです。ランダムサンプリングに基づいていますが、多様なシミュレーション手法を活用できる点が特徴です。

取引履歴を気にせずにチャート上で直接取引を表示する方法
この記事では、キーナビゲーションを使用してチャート上でポジションと取引を直接便利に表示するためのシンプルなツールを作成します。トレーダーは個々の取引を視覚的に調べ、取引結果に関するすべての情報をその場で受け取ることができるようになります。

MetaTrader 5で隠れマルコフモデルを統合する
この記事では、Pythonを使用して学習した隠れマルコフモデルをMetaTrader 5アプリケーションに統合する方法を示します。隠れマルコフモデルは、時系列データをモデル化するために使用される強力な統計的ツールであり、モデル化されるシステムは観測不可能な(隠れた)状態によって特徴付けられます。HMMの基本的な前提は、ある時刻にある状態にある確率は、その前のタイムスロットにおけるプロセスの状態に依存するということです。

リプレイシステムの開発(第37回):道を切り開く(I)
今回は、もっと前にやりたかったことをようやく始めます。確固たる地盤がないため、この部分を公に発表する自信がありませんでした。今、私にはその根拠があります。この記事の内容を理解することにできるだけ集中することをお勧めします。単に読むだけではなくて、という意味です。ここで強調しておきたいのは、この記事を理解できなければ、それに続く記事の内容を理解することはできないということです。

リプレイシステムの開発(第41回):第2段階(II)の開始
もし、この時点まですべてが正しく思えたとしたら、それはアプリケーションの開発を始めるときに、長期的なことをあまり考えていないということです。時間が経つにつれて、新しいアプリケーションをプログラムする必要はなくなり、それらを連携させるだけで済むようになります。それでは、マウス指標を組み立てる方法を説明しましょう。

母集団最適化アルゴリズム:2進数遺伝的アルゴリズム(BGA)(第1回)
この記事では、2進数遺伝的アルゴリズムやその他の集団アルゴリズムで使用されるさまざまな手法を探ります。選択、交叉、突然変異といったアルゴリズムの主な構成要素と、それらが最適化に与える影響について見ていきます。さらに、データの表示手法と、それが最適化結果に与える影響についても研究します。

細菌走化性最適化(BCO)
この記事では、細菌走化性最適化(BCO)アルゴリズムのオリジナルバージョンとその改良版を紹介します。新バージョン「BCOm」では、細菌の移動メカニズムを簡素化し、位置履歴への依78ytf存を軽減するとともに、計算負荷の大きかった元のバージョンに比べて、より単純な数学的手法を採用しています。この記事では両者の違いを詳しく検討し、とくにBCOmの特徴に焦点を当てます。また、テストを実施し、その結果をまとめます。

多通貨エキスパートアドバイザーの開発(第19回):Pythonで実装されたステージの作成
これまでは、標準のストラテジーテスター内で最適化タスクを順に自動実行することだけを考えてきました。しかし、もしそれらの実行の合間に、別の手段で得られたデータを処理したいとしたらどうなるでしょうか。ここでは、Pythonで記述されたプログラムによって新たな最適化ステージを作成する機能の追加を試みます。

PythonからMQL5へ:量子に着想を得た取引システムへの旅
この記事では、量子に着想を得た取引システムの開発について検討し、Pythonプロトタイプから実際の取引のためのMQL5実装への移行について説明します。このシステムは、量子シミュレーターを使用した従来のコンピューター上で実行されますが、重ね合わせや量子もつれなどの量子コンピューティングの原理を使用して市場の状態を分析します。主な機能には、8つの市場状態を同時に分析する3量子ビットシステム、24時間のルックバック期間、および市場分析用の7つのテクニカル指標が含まれます。精度率は控えめに思えるかもしれませんが、適切なリスク管理戦略と組み合わせると大きな優位性が得られます。

MQL5での取引戦略の自動化(第16回):ミッドナイトレンジブレイクアウト+Break of Structure (BoS)のプライスアクション
本記事では、MQL5を用いて「ミッドナイトレンジブレイクアウト + Break of Structure (BoS)」戦略を自動化し、ブレイクアウトの検出および取引実行のコードを詳細に解説します。エントリー、ストップ、利益確定のためのリスクパラメータを正確に定義し、実際の取引に活用できるようバックテストおよび最適化もおこないます。

独自のLLMをEAに統合する(第5部):LLMによる取引戦略の開発とテスト(IV) - 取引戦略のテスト
今日の人工知能の急速な発展に伴い、言語モデル(LLM)は人工知能の重要な部分となっています。私たちは、強力なLLMをアルゴリズム取引に統合する方法を考える必要があります。ほとんどの人にとって、これらの強力なモデルをニーズに応じてファインチューニングし、ローカルに展開して、アルゴリズム取引に適用することは困難です。本連載では、この目標を達成するために段階的なアプローチをとっていきます。

ペア取引における平均回帰による統計的裁定取引:数学で市場を攻略する
本記事では、ポートフォリオレベルの統計的アービトラージの基本的な概念を紹介します。数学の深い知識がない読者にも理解しやすく説明し、実際の運用を始めるためのコンセプトフレームワークを提案することを目的としています。記事には、動作するエキスパートアドバイザー(EA)と、1年間のバックテストに関する注記、再現用の設定ファイル(.iniファイル)も含まれています。


DoEasyライブラリのグラフィックス(第96部): フォームオブジェクトのグラフィックとマウスイベントの処理
本稿では、フォームオブジェクトでマウスイベントを処理する機能の作成を開始し、銘柄オブジェクトに新しいプロパティとそのトラッキングを追加します。さらに、チャート銘柄で新しいプロパティが考慮/追加されて追跡されるため、銘柄オブジェクトクラスを改善します。

ニューラルネットワークが簡単に(第95回):Transformerモデルにおけるメモリ消費の削減
Transformerアーキテクチャに基づくモデルは高い効率を示しますが、その使用は、訓練段階と運転中の両方で高いリソースコストによって複雑になります。この記事では、このようなモデルのメモリ使用量を削減するアルゴリズムを紹介します。

プライスアクション分析ツールキットの開発(第14回):Parabolic Stop and Reverseツール
プライスアクション分析にテクニカルインジケーターを取り入れることは、非常に有効なアプローチです。これらのインジケーターは、反転や押し戻しの重要なレベルを示すことが多く、市場の動きを把握する上での貴重な手がかりとなります。本記事では、パラボリックSARインジケーターを用いてシグナルを生成する自動ツールをどのように開発したかを紹介します。

MetaTrader 5を使用してPythonでカスタム通貨ペアパターンを見つける
外国為替市場には繰り返しパターンや規則性が存在するのでしょうか。私は、PythonとMetaTrader 5を使って独自のパターン分析システムを構築することに決めました。これは、外国為替市場を攻略するための、数学とプログラミングの一種の融合です。

プライスアクション分析ツールキットの開発(第5回):Volatility Navigator EA
市場の方向性を判断するのは簡単ですが、いつエントリーするかを知るのは難しい場合があります。連載「プライスアクション分析ツールキットの開発」の一環として、エントリーポイント、テイクプロフィットレベル、ストップロスの配置を提供する別のツールを紹介できることを嬉しく思います。これを実現するために、MQL5プログラミング言語を利用しました。この記事では、各ステップについて詳しく見ていきましょう。

MQL5入門(第12回):初心者のためのカスタムインジケーター作成ガイド
MQL5でカスタムインジケーターを構築する方法を学びます。プロジェクトベースのアプローチを採用します。この初心者向けガイドでは、インジケーターバッファ、プロパティ、トレンドの視覚化について解説し、段階的に学習を進めることができます。

リプレイシステムの開発 - 市場シミュレーション(第24回):FOREX (V)
本日は、Last価格に基づくシミュレーションを妨げていた制限を取り除き、このタイプのシミュレーションに特化した新しいエントリポイントをご紹介します。操作の仕組みはすべて、FOREX市場の原理に基づいています。この手順の主な違いは、BidシミュレーションとLastシミュレーションの分離です。ただし、時間をランダム化し、C_Replayクラスに適合するように調整するために使用された方法は、両方のシミュレーションで同じままであることに注意することが重要です。これは良いことです。特にティック間の処理時間に関して、一方のモードを変更すれば、もう一方のモードも自動的に改善されるからです。

ニューラルネットワークの実践:最小二乗法
この記事では、数式がコードで実装されたときよりも見た目が複雑になる理由など、いくつかのアイデアについて説明します。さらに、チャートの象限を設定する方法と、MQL5コードで発生する可能性のある1つの興味深い問題についても検討します。正直に言うと、まだどう説明すればいいのかよくわかりません。とにかく、コードで修正する方法を紹介します。

MQL5取引ツールキット(第6回):直近で約定された予約注文に関する関数で履歴管理EX5ライブラリを拡張
EX5モジュールで、直近で約定された予約注文のデータをシームレスに取得・格納するエクスポート可能な関数を作成する方法を学びます。このステップバイステップの包括的なガイドでは、直近で約定された予約注文の重要なプロパティ(注文タイプ、発注時間、約定時間、約定タイプなど)を取得するための専用かつ機能別の関数群を開発することで、履歴管理EX5ライブラリをさらに強化していきます。これらのプロパティは、予約注文の取引履歴を効果的に管理・分析するうえで重要な情報です。

MQL5での取引戦略の自動化(第8回):バタフライハーモニックパターンを用いたエキスパートアドバイザーの構築
この記事では、バタフライハーモニックパターンを検出するためのMQL5エキスパートアドバイザー(EA)を構築します。ピボットポイントを特定し、フィボナッチレベルを検証してパターンを確認します。次に、チャート上にパターンを可視化し、確認された際には自動的に取引を実行します。

ニュース取引が簡単に(第2回):リスク管理
この記事では、以前のコードと新しいコードに継承を導入します。効率性を高めるために新しいデータベース設計が実装されます。さらに、取引量計算に取り組むためのリスク管理クラスも作成されます。

知っておくべきMQL5ウィザードのテクニック(第21回):経済指標カレンダーデータによるテスト
経済指標カレンダーのデータは、デフォルトではストラテジーテスターのエキスパートアドバイザー(EA)でテストすることはできません。この制限を回避するために、データベースがどのように役立つかを考察します。そこでこの記事では、SQLiteデータベースを使用して経済指標カレンダーのニュースをアーカイブし、ウィザードで組み立てられたEAがこれを使用して売買シグナルを生成できるようにする方法を探ります。

どんな市場でも優位性を得る方法(第3回):VISA消費指数
ビッグデータの世界では、取引戦略を向上させる可能性を秘めた数百万もの代替データセットが存在します。この連載では、最も有益な公共データセットを特定するお手伝いをします。

取引におけるニューラルネットワーク:階層型ベクトルTransformer (HiVT)
マルチモーダル時系列の高速かつ正確な予測のために開発された階層的ベクトルTransformer (HiVT: Hierarchical Vector Transformer)メソッドについて詳しく説明します。

MQL5とPythonで自己最適化エキスパートアドバイザーを構築する(第4回):スタッキングモデル
本日は、自らの失敗から学習するAI搭載の取引アプリケーションの構築方法について解説します。特に、「スタッキング」と呼ばれる手法を紹介します。この手法では、2つのモデルを組み合わせて1つの予測をおこないます。1つ目のモデルは通常、性能が比較的低い学習者であり、2つ目のモデルはその学習者の残差を学習する、より高性能なモデルです。目標は、これらのモデルをアンサンブルとして統合することで、より高精度な予測を実現することです。

知っておくべきMQL5ウィザードのテクニック(第49回):近接方策最適化による強化学習
近接方策最適化は、強化学習におけるアルゴリズムの一つで、モデルの安定性を確保するために、しばしばネットワーク形式で非常に小さな増分で方策を更新します。前回の記事と同様に、ウィザードで作成したエキスパートアドバイザー(EA)において、これがどのように役立つかを探ります。

リプレイシステムの開発(第29回):エキスパートアドバイザープロジェクト - C_Mouseクラス(III)
C_Mouseクラスを改良した後は、分析のためのまったく新しいフレームワークを作るためのクラスを作ることに集中しましょう。この新しいクラスを作るのに、継承やポリモーフィズムは使用しません。その代わりに、価格線に新しいオブジェクトを追加します。それがこの記事でやろうとしていることです。次回は、分析結果を変更する方法について見るつもりです。これらはすべて、C_Mouseクラスのコードを変更することなくおこなわれます。実際には、継承やポリモーフィズムを使用すれば、もっと簡単に実現できるでしょう。しかし、同じ結果を得る方法は他にもあります。

Candlestick Trend Constraintモデルの構築(第9回):マルチ戦略エキスパートアドバイザー(I)
今日は、MQL5を使って複数の戦略をエキスパートアドバイザー(EA)に組み込む可能性を探ります。EAは、指標やスクリプトよりも幅広い機能を提供し、変化する市場環境に適応できる、より洗練された取引アプローチを可能にします。詳しくは、この記事のディスカッションをご覧ください。