
Connexusのリクエスト(第6回):HTTPリクエストとレスポンスの作成
Connexusライブラリ連載第6回目では、HTTPリクエストの構成要素全体に焦点を当て、リクエストを構成する各コンポーネントを取り上げます。そして、リクエスト全体を表現するクラスを作成し、これまでに作成したクラスを統合します。

MQL5での取引戦略の自動化(第10回):トレンドフラットモメンタム戦略の開発
この記事では、「トレンドフラットモメンタム(Trend Flat Momentum)戦略」のためのエキスパートアドバイザー(EA)をMQL5で開発します。移動平均線のクロスオーバーに、RSI(相対力指数)とCCI(商品チャネル指数)といったモメンタム系のフィルターを組み合わせて、トレードシグナルを生成します。また、バックテストの方法や、実運用でのパフォーマンス向上のための改善案についても取り上げます。

化学反応最適化(CRO)アルゴリズム(第1回):最適化におけるプロセス化学
この記事の最初の部分では、化学反応の世界に飛び込み、最適化への新しいアプローチを発見します。化学反応最適化(CRO)は、熱力学の法則から導き出された原理を使用して効率的な結果をもたらします。この革新的な方法の基礎となった分解、合成、その他の化学プロセスの秘密を明らかにします。

MQL5で取引管理者パネルを作成する(第3回):テーマ管理のための組み込みクラスの拡張(II)
このディスカッションでは、既存のダイアログライブラリを慎重に拡張して、テーマ管理ロジックを組み込みます。さらに、管理パネルプロジェクトで使用されるCDialog、CEdit、およびCButtonクラスにテーマ切り替えのメソッドを統合します。さらに洞察力のある視点については、引き続きお読みください。

HarmonyOS NEXTデバイスにMetaTrader 5などのMetaQuotesアプリをインストールする
HarmonyOS NEXTデバイスでMetaTrader 5やその他のMetaQuotesアプリをDroiTong(卓易通)を使って簡単にインストールできます。スマートフォンやノートパソコン向けの詳細なステップバイステップガイドです。

DoEasy-コントロール(第10部):WinFormsオブジェクト - インターフェイスのアニメーション化
ユーザーやオブジェクトとのオブジェクト対話機能を実装して、グラフィカルインターフェイスをアニメーション化するときが来ました。より複雑なオブジェクトを正しく動作させるためにも、新しい機能が必要になります。

DoEasy-コントロール(第11部):WinFormsオブジェクト—グループ、CheckedListBox WinFormsオブジェクト
この記事では、WinFormsオブジェクトのグループ化と、CheckBoxオブジェクトリストオブジェクトの作成について検討します。

行列分解:より実用的なモデリング
行と列ではなく列のみが指定されているため、行列モデリングが少し奇妙であることに気付かなかったかもしれません。行列分解を実行するコードを読むと、これは非常に奇妙に見えます。行と列がリストされていることを期待していた場合、因数分解しようとしたときに混乱する可能性があります。さらに、この行列モデリング方法は最適ではありません。これは、この方法で行列をモデル化すると、いくつかの制限に遭遇し、より適切な方法でモデル化がおこなわれていれば必要のない他の方法や関数を使用せざるを得なくなるためです。

多通貨エキスパートアドバイザーの開発(第12回):プロップトレーディングレベルのリスクマネージャーの育成
開発中のEAには、ドローダウンを制御するための特定のメカニズムがすでに備わっています。しかし、これは過去の価格データに対するテストの結果に基づいているため、本質的には確率的です。したがって、ドローダウンは最大予想値を超える場合があります (ただし、確率は小さいです)。指定されたドローダウン レベルへの準拠を保証するメカニズムを追加してみましょう。

MQL5取引ツールキット(第4回):履歴管理EX5ライブラリの開発
詳細なステップバイステップのアプローチで拡張履歴管理EX5ライブラリを作成し、MQL5を使用してクローズされたポジション、注文、取引履歴を取得、処理、分類、並べ替え、分析、管理する方法を学びます。

リプレイシステムの開発 - 市場シミュレーション(第21回):FOREX (II)
FOREX市場で作業するためのシステムを構築し続けます。この問題を解決するためには、まず、前のバーを読み込む前にティックの読み込みを宣言しなければなりません。これによって問題は解決されますが、同時にユーザーは構成ファイルの構造に従わざるを得なくなります。これは個人的にはあまり意味がありません。なぜなら、構成ファイルの内容を分析し、実行する役割を担うプログラムを設計することで、ユーザーが必要な要素を好きな順番で宣言できるようになるからです。

リプレイシステムの開発(第63回):サービスの再生(IV)
この記事では、1分足のティックシミュレーションに関する問題を最終的に解決し、実際のティックと共存できるようにします。これにより、将来的なトラブルを回避することが可能になります。ここで提示される資料は教育目的のみに使用されます。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを閲覧することは避けてください。

多通貨エキスパートアドバイザーの開発(第5回):可変ポジションサイズ
前回開発中のエキスパートアドバイザー(EA)は、固定されたポジションサイズのみを使用して取引をおこなうことができました。これはテスト用には許容できますが、実際の口座で取引する場合にはお勧めできません。可変のポジションサイズで取引できるようにしましょう。

取引におけるニューラルネットワーク:状態空間モデル
これまでにレビューしたモデルの多くは、Transformerアーキテクチャに基づいています。ただし、長いシーケンスを処理する場合には非効率的になる可能性があります。この記事では、状態空間モデルに基づく時系列予測の別の方向性について説明します。

プライスアクション分析ツールキットの開発(第9回):External Flow
本稿では、高度な分析手法として外部ライブラリを活用する、新たなアプローチを紹介します。pandasのようなライブラリは、複雑なデータを処理・解釈するための強力なツールを提供し、トレーダーが市場の動向についてより深い洞察を得られるようにします。このようなテクノロジーを統合することで、生のデータと実用的な戦略との間にあるギャップを埋めることができます。この革新的なアプローチの基盤を築き、テクノロジーと取引の専門知識を融合させる可能性を引き出すために、ぜひご一緒に取り組んでいきましょう。

リプレイシステムの開発(第30回):エキスパートアドバイザープロジェクト - C_Mouseクラス(IV)
今日は、プログラマーとしての職業生活のさまざまな段階で非常に役立つテクニックを学びます。多くの場合、制限されているのはプラットフォーム自体ではなく、制限について話す人の知識です。この記事では、常識と創造性があれば、クレイジーなプログラムなどを作成することなく、MetaTrader 5 プラットフォームをより面白くて多用途にし、シンプルでありながら安全で信頼性の高いコードを作成できることを説明します。創造力を駆使して、ソース コードを1行も削除したり追加したりすることなく、既存のコードを変更します。

ニューラルネットワークが簡単に(第50回):Soft Actor-Critic(モデルの最適化)
前回の記事では、Soft Actor-Criticアルゴリズムを実装しましたが、有益なモデルを訓練することはできませんでした。今回は、先に作成したモデルを最適化し、望ましい結果を得ます。

ニューラルネットワークが簡単に(第81回):Context-Guided Motion Analysis (CCMR)
これまでの作業では、常に環境の現状を評価しました。同時に、指標の変化のダイナミクスは常に「舞台裏」にとどまっていました。この記事では、連続する2つの環境状態間のデータの直接的な変化を評価できるアルゴリズムを紹介したいと思います。

プライスアクション分析ツールキットの開発(第2回): Analytical Commentスクリプト
プライスアクションを簡素化するというビジョンに沿って、市場分析を大幅に強化し、十分な情報に基づいた意思決定を支援する新しいツールを導入できることを嬉しく思います。このツールは、前日の価格、重要な支持と抵抗のレベル、取引量などの主要なテクニカル指標を表示し、チャート上に視覚的なヒントを自動的に生成します。

プライスアクション分析ツールキットの開発(第12回):External Flow (III)トレンドマップ
市場の流れは、ブル(買い手)とベア(売り手)の力関係によって決まります。市場が反応する特定の水準には、そうした力が作用しています。中でも、フィボナッチとVWAPの水準は、市場の動きに強い影響を与える傾向があります。この記事では、VWAPとフィボナッチ水準に基づいたシグナル生成の戦略を一緒に探っていきましょう。

リプレイシステムの開発(第44回):Chart Tradeプロジェクト(III)
前回の記事では、OBJ_CHARTで使用するテンプレートデータの操作方法について解説しました。ただし、あの記事ではトピックの概要に焦点を当て、詳細な部分には触れていませんでした。これは、説明をよりシンプルにするために、非常に簡略化された手法を用いたからです。物事は一見シンプルに見えることが多いですが、実際にはそうではないケースもあり、全体を正確に理解するためには、まず最も基本的な部分をしっかり押さえる必要があります。

Candlestick Trend Constraintモデルの構築(第5回):通知システム(パート2)
今日は、PythonとTelegram Bot APIと連携して、MQL5のパワーを活用した MetaTrader 5指標通知のための実用的なTelegram統合について説明します。ポイントが見逃がされることがないように、すべてを詳細に説明します。このプロジェクトが終了する頃には、ご自分のプロジェクトに応用できる貴重な洞察を得ることができるでしょう。

MQL5で自己最適化エキスパートアドバイザーを構築する(第4回):動的なポジションサイズ調整
アルゴリズム取引を成功させるには、継続的かつ学際的な学習が必要です。しかし、その可能性は無限であるがゆえに、明確な成果が得られないまま、何年もの努力を費やしてしまうこともあります。こうした課題に対応するため、私たちは徐々に複雑さを導入するフレームワークを提案します。これにより、トレーダーは不確実な結果に対して無限の時間を費やすのではなく、戦略を反復的に洗練させることが可能になります。

Candlestick Trend Constraintモデルの構築(第5回):通知システム(パート1)
本連載で作成するTrend Constraint指標からのシグナル通知を受信するためのTelegramとWhatsAppの統合を説明するために、メインのMQL5コードを特定のコードスニペットに分解します。これにより、トレーダーや開発者(初心者か経験豊富かを問わず)が簡単にコンセプトを把握できるようになります。まず、MetaTrader 5の通知に関する設定と、ユーザーにとってのその意義について説明します。これは、開発者が自分のシステムにさらに応用するためのメモを事前に取るのに役立ちます。

取引におけるナッシュ均衡ゲーム理論のHMMフィルタリングの応用
この記事では、ジョン・ナッシュのゲーム理論、特にナッシュ均衡の取引への応用について詳しく掘り下げます。トレーダーがPythonスクリプトとMetaTrader 5を活用し、ナッシュの原理を利用して市場の非効率性を特定し、活用する方法について解説します。また、この記事では、隠れマルコフモデル(HMM)や統計分析の利用を含むこれらの戦略を実行するためのステップバイステップのガイドを提供し、取引パフォーマンスの向上を目指します。

リプレイシステムの開発(第46回):Chart Tradeプロジェクト(V)
アプリケーションを動作させるために必要なファイルを探すのに時間を浪費していませんか。すべてを実行ファイルに含めてみてはどうでしょうか。そうすれば、ファイルを探す必要がなくなります。多くの人がこのような配布・保管方法を採用していることは知っていますが、少なくとも、実行ファイルの配布や保管に関してはもっと適切な方法があります。ここで紹介する方法は、MQL5だけでなく、MetaTrader 5そのものを優れたアシスタントとして使うことができるので、非常に便利です。しかも、理解するのはそれほど難しくありません。

ニューラルネットワークの実践:割線
理論的な部分ですでに説明したように、ニューラルネットワークを扱う場合、線形回帰と導関数を使用する必要があります。なぜでしょうか。その理由は、線形回帰は現存する最も単純な公式の1つだからです。本質的に、線形回帰は単なるアフィン関数です。しかし、ニューラルネットワークについて語るとき、私たちは直接線形回帰の効果には興味がありません。この直線を生み出す方程式に興味があるのです。作られた線にはそれほど興味がありません。私たちが理解すべき主要な方程式をご存じですか。ご存じでなければ、この記事を読んで理解することをお勧めします。

時系列の非定常性の指標としての2標本コルモゴロフ–スミルノフ検定
この記事では、最も有名なノンパラメトリック同質性検定の1つである2標本のコルモゴロフ–スミルノフ検定について考察します。モデルデータと実際の相場の両方が分析されています。また、この記事では非定常性指標(iスミルノフ距離)の構築例も紹介しています。

MQL5で古典的な戦略を再構築する(後編):FTSE100と英国債
この連載では、人気のある取引戦略を探り、AIを使ってその改善を試みます。今日の記事では、株式市場と債券市場の関係に基づく古典的な取引戦略を再考します。

主成分を用いた特徴量選択と次元削減
この記事では、Luca Puggini氏とSean McLoone氏による論文「Forward Selection Component Analysis: Algorithms and Applications」に基づき、修正版のForward Selection Component Analysis (FSCA)アルゴリズムの実装について詳しく解説します。

データサイエンスとML(第33回):MQL5におけるPandas DataFrame、ML使用のためのデータ収集が簡単に
機械学習モデルを使用する際は、学習・検証・テストに使用するデータの一貫性を確保することが重要です。この記事では、MQL5の外部(多くの学習がおこなわれる環境)とMQL5内部の両方で同じデータを利用できるようにするため、MQL5で独自のPandasライブラリを作成します。

MQL5で自己最適化エキスパートアドバイザーを構築する(第6回):自己適応型取引ルール(II)
本記事では、より良い売買シグナルを得るために、RSIのレベルと期間を最適化する方法を探ります。最適なRSI値を推定する手法や、グリッドサーチと統計モデルを用いた期間選定の自動化について紹介します。最後に、Pythonによる分析を活用しながら、MQL5でソリューションを実装します。私たちのアプローチは、複雑になりがちな問題をシンプルに解決することを目指した、実用的かつ分かりやすいものです。

MQL5における高度なメモリ管理と最適化テクニック
MQL5の取引システムにおけるメモリ使用を最適化するための実践的なテクニックを紹介します。効率的で安定性が高く、高速に動作するエキスパートアドバイザー(EA)やインジケーターの構築方法を学びましょう。MQL5でのメモリの仕組み、システムを遅くしたり不安定にしたりする一般的な落とし穴、そして、最も重要なこととして、それらを解決する方法について詳しく解説します。

初心者からプロまでMQL5をマスターする(第4回):配列、関数、グローバルターミナル変数について
この記事は初心者向け連載の続きです。データ配列、データと関数の相互作用、および異なるMQL5プログラム間でのデータ交換を可能にするグローバルターミナル変数について詳しく説明します。

取引におけるニューラルネットワーク:価格変動予測におけるマスクアテンションフリーアプローチ
この記事では、Mask-Attention-Free Transformer (MAFT)法と、それを取引分野に応用する可能性について説明します。従来のTransformerはシーケンスを処理する際にマスキングを必要としますが、MAFTはこのマスキングを不要にすることでアテンション処理を最適化し、計算効率を大幅に向上させています。

MQL5で取引管理者パネルを作成する(第9回):コード編成(IV):取引管理パネルクラス
このディスカッションでは、New_Admin_Panel EAにおけるTradeManagementPanelの最新版について解説します。このアップデートでは、組み込みクラスを活用することで、ユーザーフレンドリーな取引管理インターフェイスを提供するようにパネルが強化されました。パネルには、新規ポジションのオープン用取引ボタンや、既存のポジションおよび指値注文の管理用コントロールが含まれています。特に注目すべき機能は、インターフェイス上から直接ストップロス(SL)やテイクプロフィット(TP)を設定できるリスク管理機能が統合された点です。このアップデートにより、大規模なプログラムにおけるコードの整理が改善され、端末上では複雑になりがちな注文管理ツールへのアクセスが簡素化されました。

MetaTrader 5用のMQTTクライアントの開発:TDDアプローチ(第3部)
この記事は、MQTTプロトコルのネイティブMQL5クライアントの開発手順を説明する連載の第3部です。今回は、CONNECT/CONNACKパケット交換の操作時の動作部分を実装するために、テスト駆動開発をどのように使用しているかについて詳しく説明します。この手順の最後に、クライアントは、接続の試みから生じる可能性のあるサーバー結果のどれに対しても、絶対的に、適切に振る舞うことができなければなりません。

人工協調探索(ACS)アルゴリズム
人工協調探索(ACS)は、バイナリ行列と、相互主義的関係と協調に基づく複数の動的な個体群を用いて、最適解を迅速かつ正確に探索する革新的な手法です。捕食者と被食者に対するACS独自のアプローチにより、数値最適化問題で優れた結果を出すことができます。

取引におけるカオス理論(第1回):金融市場における導入と応用、リアプノフ指数
カオス理論は金融市場に適用できるでしょうか。この記事では、従来のカオス理論とカオスシステムがビル・ウィリアムズが提案した市場のカオスの概念とどのように異なるかについて考察します。