MQL5開発用のカスタムデバッグおよびプロファイリングツール(第1回):高度なロギング
MQL5で、単なるPrint文を超えた強力なカスタムロギングフレームワークを実装する方法を学びましょう。このフレームワークは、ログの重要度レベル、複数の出力ハンドラ、自動ファイルローテーションをサポートし、実行中にすべて設定可能です。シングルトン設計のCLoggerをConsoleLogHandlerとFileLogHandlerに統合することで、[エキスパート]タブと永続ファイルの両方に、文脈情報やタイムスタンプ付きのログを記録できます。明確でカスタマイズ可能なログ形式と集中管理により、エキスパートアドバイザー(EA)のデバッグとパフォーマンストレースを効率化します。
MQL5で自己最適化エキスパートアドバイザーを構築する(第8回):複数戦略分析
複数の戦略をどのように組み合わせれば、最も効果的に強力なアンサンブル戦略を構築できるでしょうか。本記事では、3種類の戦略を1つの取引アプリケーションに統合する方法について検討します。トレーダーは通常、ポジションのエントリーとクローズに特化した戦略を用いますが、私たちは機械がこのタスクをより優れた形で遂行できるかどうかを探ります。最初の議論として、ストラテジーテスターの機能と、本タスクで必要となるオブジェクト指向プログラミング(OOP)の原則に慣れていきます。
知っておくべきMQL5ウィザードのテクニック(第25回):多時間枠のテストと取引
アセンブリクラスで使用されているMQL5コードアーキテクチャの制限によって、複数の時間枠に基づく戦略は、デフォルトではウィザードで組み立てられたEAではテストできません。今回は、二次移動平均を使用したケーススタディで、複数の時間枠を使用する戦略について、この制限を回避する可能性を探ります。
古典的な戦略を再構築する(第9回):多時間枠分析(II)
本日のディスカッションでは、AIモデルがどの時間枠で最高のパフォーマンスを発揮するかを明らかにするため、多時間枠分析の戦略を検討します。この分析により、EURUSDペアにおいて月次および時間足の時間枠が比較的誤差の少ないモデルを生成することが分かりました。この結果を活用し、月次時間枠でAIによる予測を行い、時間枠で取引を実行するアルゴリズムを作成しました。
外国為替におけるポートフォリオ最適化:VaRとマーコウィッツ理論の統合
FXにおけるポートフォリオ取引はどのように機能するのでしょうか。マーコウィッツのポートフォリオ理論による資産配分最適化と、VaRモデルによるリスク最適化はどのように統合できるのでしょうか。ポートフォリオ理論に基づいたコードを作成し、一方では低リスクを確保し、もう一方では受け入れ可能な長期的収益性を得ることを試みます。
MQL5取引ツールキット(第6回):直近で約定された予約注文に関する関数で履歴管理EX5ライブラリを拡張
EX5モジュールで、直近で約定された予約注文のデータをシームレスに取得・格納するエクスポート可能な関数を作成する方法を学びます。このステップバイステップの包括的なガイドでは、直近で約定された予約注文の重要なプロパティ(注文タイプ、発注時間、約定時間、約定タイプなど)を取得するための専用かつ機能別の関数群を開発することで、履歴管理EX5ライブラリをさらに強化していきます。これらのプロパティは、予約注文の取引履歴を効果的に管理・分析するうえで重要な情報です。
MQL5での取引戦略の自動化(第23回):トレーリングとバスケットロジックによるゾーンリカバリ
この記事では、トレーリングストップとマルチバスケット取引機能を導入することで、ゾーンリカバリー(Zone Recovery)システムを強化します。改善されたアーキテクチャが、利益確定のために動的トレーリングストップをどのように活用し、複数の取引シグナルを効率的に処理するバスケット管理システムの使用方法を探ります。実装とバックテストを通じて、適応的な市場環境に対応するより堅牢な取引システムを実証します。
Candlestick Trend Constraintモデルの構築(第9回):マルチ戦略エキスパートアドバイザー(I)
今日は、MQL5を使って複数の戦略をエキスパートアドバイザー(EA)に組み込む可能性を探ります。EAは、指標やスクリプトよりも幅広い機能を提供し、変化する市場環境に適応できる、より洗練された取引アプローチを可能にします。詳しくは、この記事のディスカッションをご覧ください。
細菌走化性最適化(BCO)
この記事では、細菌走化性最適化(BCO)アルゴリズムのオリジナルバージョンとその改良版を紹介します。新バージョン「BCOm」では、細菌の移動メカニズムを簡素化し、位置履歴への依78ytf存を軽減するとともに、計算負荷の大きかった元のバージョンに比べて、より単純な数学的手法を採用しています。この記事では両者の違いを詳しく検討し、とくにBCOmの特徴に焦点を当てます。また、テストを実施し、その結果をまとめます。
未来のトレンドを見通す鍵としての取引量ニューラルネットワーク分析
この記事では、テクニカル分析の原理とLSTMニューラルネットワークの構造を統合することで、取引量分析に基づく価格予測の改善可能性を探ります。特に、異常な取引量の検出と解釈、クラスタリングの活用、および機械学習の文脈における取引量に基づく特徴量の作成と定義に注目しています。
DoEasy-コントロール(第12部):基本リストオブジェクト、ListBoxおよびButtonListBox WinFormsオブジェクト
この記事では、WinFormsオブジェクトリストの基本オブジェクトと、2つの新しいオブジェクトを作成します。ListBoxとButtonListBoxです。
リプレイシステムの開発(第35回):調整(I)
前に進む前に、いくつかのことを解決する必要があります。これらは実際には必要な修正ではなく、クラスの管理方法や使用方法の改善です。その理由は、システム内の何らかの相互作用によって障害が発生したということです。このような失敗をなくすために原因を突き止めようと試みましたが、すべて失敗に終わりました。例えば、C/C++でポインタや再帰を使用すると、プログラムがクラッシュしてしまいます。
ニューラルネットワークが簡単に(第69回):密度に基づく行動方策の支持制約(SPOT)
オフライン学習では、固定されたデータセットを使用するため、環境の多様性をカバーする範囲が制限されます。学習過程において、私たちのエージェントはこのデータセットを超える行動を生成することができます。環境からのフィードバックがなければ、そのような行動の評価が正しいとどうやって確信できるのでしょうか。訓練データセット内のエージェントの方策を維持することは、訓練の信頼性を確保するために重要な要素となります。これが、この記事でお話しする内容です。
ニューラルネットワークが簡単に(第90回):時系列の周波数補間(FITS)
FEDformer法を研究することで、時系列表現の周波数領域への扉を開きました。この新しい記事では、私たちが始めたトピックを続けます。分析をおこなうだけでなく、特定の分野におけるその後の状態を予測することができる手法について考えてみたいと思います。
初心者からプロまでMQL5をマスターする(第5回):基本的な制御フロー演算子
この記事では、プログラムの実行フローを変更するために使用される主要な演算子(条件文、ループ、switch文)について説明します。これらの演算子を利用することで、作成する関数がより「インテリジェント」に動作できるようになります。
知っておくべきMQL5ウィザードのテクニック(第48回):ビル・ウィリアムズのアリゲーター
ビル・ウィリアムズが考案したアリゲーターインジケーターは、明確なシグナルを生成し、他のインジケーターと組み合わせて使用されることが多い、多機能なトレンド識別インジケーターです。MQL5ウィザードのクラスとアセンブリを活用することで、パターンベースでさまざまなシグナルをテストできるため、このインジケーターも検討対象となります。
MQL5入門(第10回):MQL5の組み込みインジケーターの操作に関する初心者向けガイド
この記事では、プロジェクトベースのアプローチを使用してRSIベースのエキスパートアドバイザー(EA)を作成する方法に焦点を当て、MQL5の組み込みインジケーターの活用方法を紹介します。RSI値を取得して活用し、流動性スイープに対応し、チャートオブジェクトを使用して取引の視覚化を強化する方法を学びます。さらに、パーセンテージベースのリスク設定、リスク報酬比率の実装、利益確保のためのリスク修正など、効果的なリスク管理についても解説します。
プライスアクション分析ツールキットの開発(第5回):Volatility Navigator EA
市場の方向性を判断するのは簡単ですが、いつエントリーするかを知るのは難しい場合があります。連載「プライスアクション分析ツールキットの開発」の一環として、エントリーポイント、テイクプロフィットレベル、ストップロスの配置を提供する別のツールを紹介できることを嬉しく思います。これを実現するために、MQL5プログラミング言語を利用しました。この記事では、各ステップについて詳しく見ていきましょう。
プライスアクション分析ツールキットの開発(第9回):External Flow
本稿では、高度な分析手法として外部ライブラリを活用する、新たなアプローチを紹介します。pandasのようなライブラリは、複雑なデータを処理・解釈するための強力なツールを提供し、トレーダーが市場の動向についてより深い洞察を得られるようにします。このようなテクノロジーを統合することで、生のデータと実用的な戦略との間にあるギャップを埋めることができます。この革新的なアプローチの基盤を築き、テクノロジーと取引の専門知識を融合させる可能性を引き出すために、ぜひご一緒に取り組んでいきましょう。
MQL5入門(第15回):初心者のためのカスタムインジケーター作成ガイド(IV)
この記事では、MQL5でプライスアクションインジケーターを構築する方法を学びます。具体的には、トレンド分析において重要なポイントである、安値(L)、高値(H)、安値切り上げ(HL)、高値更新(HH)、安値更新(LL)、高値切り下げ(LH)といった構造の把握に焦点を当てます。また、プレミアムゾーンとディスカウントゾーンの識別、50%リトレースメントレベルの表示、リスクリワード比に基づく利益目標の計算についても解説します。さらに、トレンド構造に基づいてエントリーポイント、ストップロス(SL)、テイクプロフィット(TP)の設定方法も扱います。
リプレイシステムの開発(第38回):道を切り開く(II)
MQL5プログラマーを自認する人の多くは、この記事で概説するような基本的な知識を持っていません。MQL5は多くの人によって限定的なツールだと考えてられていますが、実際の理由は、そのような人たちが必要な知識を持っていないということです。知らないことがあっても恥じることはありません。聞かなかったことを恥じるべきです。MetaTrader 5で指標の複製を強制的に無効にするだけでは、指標とEA間の双方向通信を確保することはできません。まだこれにはほど遠いものの、チャート上でこの指標が重複していないという事実は、私たちに自信を与えてくれます。
プライスアクション分析ツールキットの開発(第9回):External Flow
本稿では、高度な分析手法として外部ライブラリを活用する、新たなアプローチを紹介します。pandasのようなライブラリは、複雑なデータを処理・解釈するための強力なツールを提供し、トレーダーが市場の動向についてより深い洞察を得られるようにします。このようなテクノロジーを統合することで、生のデータと実用的な戦略との間にあるギャップを埋めることができます。この革新的なアプローチの基盤を築き、テクノロジーと取引の専門知識を融合させる可能性を引き出すために、ぜひご一緒に取り組んでいきましょう。
時系列の非定常性の指標としての2標本コルモゴロフ–スミルノフ検定
この記事では、最も有名なノンパラメトリック同質性検定の1つである2標本のコルモゴロフ–スミルノフ検定について考察します。モデルデータと実際の相場の両方が分析されています。また、この記事では非定常性指標(iスミルノフ距離)の構築例も紹介しています。
データサイエンスとML(第33回):MQL5におけるPandas DataFrame、ML使用のためのデータ収集が簡単に
機械学習モデルを使用する際は、学習・検証・テストに使用するデータの一貫性を確保することが重要です。この記事では、MQL5の外部(多くの学習がおこなわれる環境)とMQL5内部の両方で同じデータを利用できるようにするため、MQL5で独自のPandasライブラリを作成します。
ニューラルネットワークが簡単に(第70回):閉形式方策改善演算子(CFPI)
この記事では、閉形式の方策改善演算子を使用して、オフラインモードでエージェントの行動を最適化するアルゴリズムを紹介します。
時間進化移動アルゴリズム(TETA)
これは私自身のアルゴリズムです。本記事では、並行宇宙や時間の流れの概念に着想を得た「時間進化移動アルゴリズム(TETA: Time Evolution Travel Algorithm)」を紹介します。本アルゴリズムの基本的な考え方は、従来の意味でのタイムトラベルは不可能であるものの、異なる現実に至る一連の出来事の順序を選択することができるという点にあります。
知っておくべきMQL5ウィザードのテクニック(第14回):STFによる多目的時系列予測
データのモデリングに「空間」と「時間」の両方の測定基準を使用する空間的時間的融合は、主にリモートセンシングや、私たちの周囲をよりよく理解するための他の多くの視覚ベースの活動で有用です。発表された論文のおかげで、トレーダーへの可能性を検証することで、その活用に斬新なアプローチを取ります。
主成分を用いた特徴量選択と次元削減
この記事では、Luca Puggini氏とSean McLoone氏による論文「Forward Selection Component Analysis: Algorithms and Applications」に基づき、修正版のForward Selection Component Analysis (FSCA)アルゴリズムの実装について詳しく解説します。
PythonからMQL5へ:量子に着想を得た取引システムへの旅
この記事では、量子に着想を得た取引システムの開発について検討し、Pythonプロトタイプから実際の取引のためのMQL5実装への移行について説明します。このシステムは、量子シミュレーターを使用した従来のコンピューター上で実行されますが、重ね合わせや量子もつれなどの量子コンピューティングの原理を使用して市場の状態を分析します。主な機能には、8つの市場状態を同時に分析する3量子ビットシステム、24時間のルックバック期間、および市場分析用の7つのテクニカル指標が含まれます。精度率は控えめに思えるかもしれませんが、適切なリスク管理戦略と組み合わせると大きな優位性が得られます。
MQL5入門(第13回):初心者のためのカスタムインジケーター作成ガイド(II)
この記事では、カスタムの平均足インジケーターをゼロから作成する方法を解説し、カスタムインジケーターをエキスパートアドバイザー(EA)に組み込む方法も紹介します。インジケーターの計算方法、取引実行ロジック、リスク管理の手法についても取り上げ、自動売買戦略の向上を目指します。
MQL5で取引管理者パネルを作成する(第9回):コード編成(IV):取引管理パネルクラス
このディスカッションでは、New_Admin_Panel EAにおけるTradeManagementPanelの最新版について解説します。このアップデートでは、組み込みクラスを活用することで、ユーザーフレンドリーな取引管理インターフェイスを提供するようにパネルが強化されました。パネルには、新規ポジションのオープン用取引ボタンや、既存のポジションおよび指値注文の管理用コントロールが含まれています。特に注目すべき機能は、インターフェイス上から直接ストップロス(SL)やテイクプロフィット(TP)を設定できるリスク管理機能が統合された点です。このアップデートにより、大規模なプログラムにおけるコードの整理が改善され、端末上では複雑になりがちな注文管理ツールへのアクセスが簡素化されました。
リプレイシステムの開発(第26回):エキスパートアドバイザープロジェクト-C_Terminalクラス
これで、リプレイ/シミュレーションシステムで使用するEAの作成を開始できます。ただし、行き当たりばったりの解決策ではなく、何か改善策が必要です。にもかかわらず、最初の複雑さに怯んではなりません。どこかで始めることが重要で、そうでなければ、その課題を克服しようともせずに、その難しさを反芻してしまうことになります。それこそがプログラミングの醍醐味であり、学習、テスト、徹底的な研究を通じて障害を克服することです。
知っておくべきMQL5ウィザードのテクニック(第24回):移動平均
移動平均は、ほとんどのトレーダーが使用し、理解している非常に一般的な指標です。この記事では、MQL5ウィザードで組み立てられたエキスパートアドバイザー(EA)の中で、あまり一般的ではないかもしれない使用例を探っていきます。
ニュース取引が簡単に(第2回):リスク管理
この記事では、以前のコードと新しいコードに継承を導入します。効率性を高めるために新しいデータベース設計が実装されます。さらに、取引量計算に取り組むためのリスク管理クラスも作成されます。
プライスアクション分析ツールキットの開発(第2回): Analytical Commentスクリプト
プライスアクションを簡素化するというビジョンに沿って、市場分析を大幅に強化し、十分な情報に基づいた意思決定を支援する新しいツールを導入できることを嬉しく思います。このツールは、前日の価格、重要な支持と抵抗のレベル、取引量などの主要なテクニカル指標を表示し、チャート上に視覚的なヒントを自動的に生成します。
MQL5入門(第18回):ウォルフ波動パターンの基本
本記事では、ウォルフ波動(Wolfe Wave)パターンを詳細に解説し、弱気と強気の両方のバリエーションを取り上げます。また、この高度なチャートパターンに基づいて有効な買いと売りのセットアップを特定するためのステップごとのロジックも分解して説明します。
リプレイシステムの開発(第37回):道を切り開く(I)
今回は、もっと前にやりたかったことをようやく始めます。確固たる地盤がないため、この部分を公に発表する自信がありませんでした。今、私にはその根拠があります。この記事の内容を理解することにできるだけ集中することをお勧めします。単に読むだけではなくて、という意味です。ここで強調しておきたいのは、この記事を理解できなければ、それに続く記事の内容を理解することはできないということです。
デイトレードLarry Connors RSI2平均回帰戦略
Larry Connorsは著名なトレーダー兼著者であり、特に2期間RSI (RSI2)などのクオンツトレーディングや戦略で知られています。RSI2は短期的な買われすぎ・売られすぎの市場状況を識別するのに役立ちます。本記事では、まず私たちの研究の動機を説明し、その後Connorsの代表的な3つの戦略をMQL5で再現し、S&P 500指数CFDのデイトレードに適用していきます。
リプレイシステムの開発(第41回):第2段階(II)の開始
もし、この時点まですべてが正しく思えたとしたら、それはアプリケーションの開発を始めるときに、長期的なことをあまり考えていないということです。時間が経つにつれて、新しいアプリケーションをプログラムする必要はなくなり、それらを連携させるだけで済むようになります。それでは、マウス指標を組み立てる方法を説明しましょう。
不一致問題(Disagreement Problem):AIにおける複雑性の説明可能性を深く掘り下げる
説明可能性という波乱の海を航海しながら、人工知能(AI)の謎の核心に飛び込みましょう。モデルがその内部構造を隠す領域において、私たちの探求は、機械学習の回廊にこだまする「不一致問題」を明らかにします。