MQL5入門(第13回):初心者のためのカスタムインジケーター作成ガイド(II)
この記事では、カスタムの平均足インジケーターをゼロから作成する方法を解説し、カスタムインジケーターをエキスパートアドバイザー(EA)に組み込む方法も紹介します。インジケーターの計算方法、取引実行ロジック、リスク管理の手法についても取り上げ、自動売買戦略の向上を目指します。
MQL5での取引戦略の自動化(第16回):ミッドナイトレンジブレイクアウト+Break of Structure (BoS)のプライスアクション
本記事では、MQL5を用いて「ミッドナイトレンジブレイクアウト + Break of Structure (BoS)」戦略を自動化し、ブレイクアウトの検出および取引実行のコードを詳細に解説します。エントリー、ストップ、利益確定のためのリスクパラメータを正確に定義し、実際の取引に活用できるようバックテストおよび最適化もおこないます。
母集団最適化アルゴリズム:SSG(Saplings Sowing and Growing up、苗木の播種と育成)
SSG(Saplings Sowing and Growing up、苗木の播種と育成)アルゴリズムは、様々な条件下で優れた生存能力を発揮する、地球上で最も回復力のある生物の1つからインスピレーションを得ています。
パターン検索への総当たり攻撃アプローチ(第V部):新鮮なアングル
この記事では、私が長い時間をかけてたどり着いた、アルゴリズム取引に対するまったく異なるアプローチを紹介します。もちろん、これはすべて私の総当たり攻撃プログラムに関係しています。これには、複数の問題を同時に解決できるように多くの変更が加えられています。とはいえ、この記事はより一般的で可能な限りシンプルなものであるため、総当たり攻撃について何も知らない読者にも適しています。
独自のLLMをEAに統合する(第5部):LLMによる取引戦略の開発とテスト(IV) - 取引戦略のテスト
今日の人工知能の急速な発展に伴い、言語モデル(LLM)は人工知能の重要な部分となっています。私たちは、強力なLLMをアルゴリズム取引に統合する方法を考える必要があります。ほとんどの人にとって、これらの強力なモデルをニーズに応じてファインチューニングし、ローカルに展開して、アルゴリズム取引に適用することは困難です。本連載では、この目標を達成するために段階的なアプローチをとっていきます。
知っておくべきMQL5ウィザードのテクニック(第26回):移動平均とハースト指数
ハースト指数は、時系列データが長期間にわたってどれだけ自己相関しているかを示す指標です。ハースト指数は、時系列データの長期的な特性を捉えることがわかっているため、経済や金融に限らず、幅広い時系列分析において重要な役割を果たします。本稿では、ハースト指数を移動平均線と組み合わせることで、トレーダーにとって有用なシグナルをどのように得られるかを検討し、その潜在的なメリットに焦点を当てます。
初心者からプロまでMQL5をマスターする(第5回):基本的な制御フロー演算子
この記事では、プログラムの実行フローを変更するために使用される主要な演算子(条件文、ループ、switch文)について説明します。これらの演算子を利用することで、作成する関数がより「インテリジェント」に動作できるようになります。
MQL5での取引戦略の自動化(第4回):Multi-Level Zone Recoveryシステムの構築
この記事では、RSI(相対力指数)を活用して取引シグナルを生成する、MQL5によるMulti-Level Zone Recoveryシステムの開発について解説します。本システムでは、各シグナルインスタンスを動的に配列構造に追加し、Zone Recoveryロジックの中で複数のシグナルを同時に管理することが可能になります。このアプローチにより、スケーラブルかつ堅牢なコード設計を維持しながら、複雑な取引管理シナリオに柔軟かつ効果的に対応できる方法を紹介します。
多通貨エキスパートアドバイザーの開発(第13回):第2段階の自動化 - グループへの選択
自動最適化の第1段階はすでに実装されています。いくつかの基準に従ってさまざま銘柄と時間枠の最適化を実行し、各パスの結果に関する情報をデータベースに保存します。ここで、最初の段階で見つかったものから最適なパラメータセットのグループを選択します。
人工散布アルゴリズム(ASHA)
この記事では、一般的な最適化問題を解決するために開発された新しいメタヒューリスティック手法、人工散布アルゴリズム(ASHA: Artificial Showering Algorithm)を紹介します。ASHAは、水の流れと蓄積のプロセスをシミュレーションすることで、各リソース単位(水)が最適解を探索する「理想フィールド」という概念を構築します。本稿では、ASHAがフローと蓄積の原理をどのように適応させ、探索空間内でリソースを効率的に割り当てるかを解説し、その実装およびテスト結果を紹介します。
リプレイシステムの開発(第53回):物事は複雑になる(V)
今回は、あまり理解されていない重要なトピックを取り上げます。「カスタムイベント」です。これは危険です。これらの要素の長所と短所を解説します。このトピックは、MQL5やその他の言語でプロのプログラマーになりたい人にとって重要な鍵となります。ここではMQL5とMetaTrader 5に焦点を当てます。
ニューラルネットワークの実践:擬似逆行列(I)
今日は、純粋なMQL5言語で擬似逆行列の計算を実装する方法を検討し始めます。これから見るコードは、初心者にとっては予想していたよりもはるかに複雑なものになる予定で、それをどのように簡単に説明するかをまだ模索中です。したがって、今のところは、これを珍しいコードを学ぶ機会と考えてください。落ち着いて注意深く学んでください。効率的または迅速な適用を目的としたものではありませんが、可能な限り教訓的なものにすることが目標です。
知っておくべきMQL5ウィザードのテクニック(第08回):パーセプトロン
パーセプトロン(単一隠れ層ネットワーク)は、基本的な自動取引に精通していて、ニューラルネットワークを試してみようとしている人にとって、優れた入門編となります。エキスパートアドバイザー(EA)用のMQL5ウィザードクラスの一部であるシグナルクラスアセンブリでこれをどのように実現できるかを段階的に見ていきます。
知っておくべきMQL5ウィザードのテクニック(第53回):MFI (Market Facilitation Index)
MFI(Market Facilitation Index、マーケットファシリテーションインデックス)は、ビル・ウィリアムズによる指標の一つで、出来高と連動した価格変動の効率性を測定することを目的としています。いつものように、本記事では、ウィザードアセンブリシグナルクラスの枠組みにおいて、このインジケーターのさまざまなパターンを検証し、それに基づいたテストレポートおよび分析結果を紹介します。
MQL5入門(第14回):初心者のためのカスタムインジケーター作成ガイド(III)
MQL5でチャートオブジェクトを使ってハーモニックパターンインジケーターを構築する方法を学びましょう。スイングポイントの検出、フィボナッチリトレースメントの適用、そしてパターン認識の自動化について解説します。
PythonとMQL5における局所的特徴量選択の適用
この記事では、Narges Armanfardらの論文「Local Feature Selection for Data Classification」で提案された特徴量選択アルゴリズムを紹介します。このアルゴリズムはPythonで実装されており、MetaTrader 5アプリケーションに統合可能なバイナリ分類モデルの構築に使用されます。
機械学習の限界を克服する(第3回):既約誤差に関する新たな視点
本記事では、モデルがおこなうすべての予測に密かに影響を与える、隠れた幾何学的誤差の源に新たな視点を提供します。取引における機械学習予測の評価方法と活用法を再考することで、従来見過ごされてきたこの視点が、より鋭い意思決定、より高いリターン、そして、すでに理解していると思っていたモデルをより賢く活用する道を開くことを示します。
Pythonでの見せかけの回帰
見せかけの回帰は、2つの時系列がまったくの偶然で高い相関を示し、回帰分析で誤解を招く結果をもたらす場合に発生します。このような場合、変数が関連しているように見えても、その相関関係は偶然であり、モデルの信頼性は低くなります。
インジケーターを便利に扱うためのシンプルなソリューション
この記事では、チャート上からインジケーターの設定を直接変更できるシンプルなパネルの作成方法と、そのパネルをインジケーターに接続するために必要な変更点について解説します。この記事はMQL5初心者向けに書かれています。
MQL5の圏論(第21回):LDAによる自然変換
連載21回目となるこの記事では、自然変換と、線形判別分析を使ったその実装方法について引き続き見ていきます。前回同様、シグナルクラス形式でその応用例を紹介します。
MQL5経済指標カレンダーを使った取引(第3回):通貨、重要度、時間フィルターの追加
この記事では、MQL5経済カレンダーダッシュボードにフィルターを実装し、通貨、重要度、時間ごとにニュースイベントの表示を絞り込みます。まず、各カテゴリのフィルター基準を設定し、それをダッシュボードに組み込むことで、関連するイベントのみが表示されるようにします。最後に、各フィルターが動的に更新され、トレーダーにとって必要な、焦点を絞ったリアルタイムの経済情報が提供されるようにします。
一からの取引エキスパートアドバイザーの開発(第28部):未来に向かって(III)
私たちの発注システムが対応できていないタスクがまだ1つありますが、最終的に解決する予定です。MetaTrader 5は、注文値の作成と修正を可能にするチケットのシステムを備えています。アイデアは、同じチケットシステムをより高速かつ効率的にするエキスパートアドバイザー(EA)を持つことです。
Candlestick Trend Constraintモデルの構築(第1回):EAとテクニカル指標について
この記事は初心者とプロMQL5開発者の両方を対象としています。これは、シグナルを生成する指標をより長い時間枠のトレンドに定義し、制約するためのコードの一部を提供します。このように、トレーダーはより広い市場視点を取り入れることで戦略を強化することができ、より強固で信頼性の高い売買シグナルが得られる可能性があります。
アルゴリズム取引のリスクマネージャー
本稿の目的は、リスクマネージャーを利用する必要性を証明し、アルゴリズム取引におけるリスク管理の原則を別クラスで実践することで、金融市場におけるデイ取引と投資におけるリスク標準化アプローチの有効性を誰もが検証できるようにすることです。この記事では、アルゴリズム取引用のリスクマネージャークラスを作成します。これは、手動取引のリスクマネージャーの作成について述べた前回の記事の論理的な続きです。
MQL5での取引戦略の自動化(第2回):一目均衡表とオーサムオシレーターを備えた雲抜けシステム
この記事では、一目均衡表とオーサムオシレーター(Awesome Oscillator)を活用し、「雲抜け戦略」を自動化するエキスパートアドバイザー(EA)を作成します。インジケーターハンドルの初期化、ブレイクアウト条件の検出、自動売買におけるエントリーおよびエグジットの実装手順について、段階的に解説します。さらに、トレーリングストップやポジション管理ロジックを組み込むことで、EAのパフォーマンスと市場適応力を高める方法にも触れます。
プライスアクション分析ツールキットの開発(第11回):Heikin Ashi Signal EA
MQL5は、ユーザーの好みに合わせてカスタマイズ可能な自動売買システムを開発するための無限の可能性を提供します。複雑な数値計算も実行できることをご存知でしょうか。この記事では、自動売買戦略として日本の平均足手法を紹介します。
MQL5の圏論(第19回):自然性の正方形の帰納法
自然性の正方形の帰納法を考えることで、自然変換について考察を続けます。MQL5ウィザードで組み立てられたエキスパートアドバイザー(EA)の多通貨の実装には若干の制約があるため、スクリプトでデータ分類能力を紹介しています。主な用途は、価格変動の分類とその予測です。
古典的な戦略を再構築する(第11回):移動平均クロスオーバー(II)
移動平均とストキャスティクスオシレーターは、トレンドに従う取引シグナルを生成するために使用できます。ただし、これらのシグナルは価格変動が発生した後にのみ観察されます。AIを使用することで、テクニカルインジケーターに内在するこの遅れを効果的に克服できます。この記事では、既存の取引戦略を改善できるような、完全に自律的なAI搭載のエキスパートアドバイザー(EA)を作成する方法を説明します。最も古い取引戦略であっても、改善することは可能です。
HarmonyOS NEXTデバイスにMetaTrader 5などのMetaQuotesアプリをインストールする
HarmonyOS NEXTデバイスでMetaTrader 5やその他のMetaQuotesアプリをDroiTong(卓易通)を使って簡単にインストールできます。スマートフォンやノートパソコン向けの詳細なステップバイステップガイドです。
知っておくべきMQL5ウィザードのテクニック(第19回):ベイズ推定
ベイズ推定とは、新しい情報が入手可能になったときに確率仮説を更新するためにベイズの定理を採用することです。これは直感的に時系列分析への適応につながるので、シグナルだけでなく、資金管理やトレーリングストップのためのカスタムクラスを構築する際に、これをどのように利用できるか見てみましょう。
DoEasy - コントロール(第30部):ScrollBarコントロールのアニメーション化
今回は、ScrollBarコントロールの開発の続きと、マウスインタラクション機能の実装を開始します。さらに、マウスの状態フラグやイベントのリストも充実させる予定です。
MQL5で古典的な戦略を再構築する(第3回):FTSE100予想
この連載では、よく知られた取引戦略を再検討し、AIを使って改善できるかどうかを検証します。本日の記事では、FTSE100について調べ、指数を構成する個別銘柄の一部を使って指数の予測を試みます。
手動取引のリスクマネージャー
この記事では、手動取引用のリスクマネージャークラスをゼロから書く方法について詳しく説明します。このクラスは、自動化プログラムを使用するアルゴリズムトレーダーが継承するための基本クラスとしても使用できます。
初心者からプロまでMQL5をマスターする(第4回):配列、関数、グローバルターミナル変数について
この記事は初心者向け連載の続きです。データ配列、データと関数の相互作用、および異なるMQL5プログラム間でのデータ交換を可能にするグローバルターミナル変数について詳しく説明します。
初級から中級まで:再帰
この記事では、とても興味深く、難易度のやや高いプログラミングの概念について見ていきます。ただし、この概念は細心の注意をもって扱うべきです。なぜなら、誤用や誤解によって、本来は比較的単純なプログラムが、不要に複雑化してしまう危険があるからです。しかし、正しく使用し、かつ適切な状況にうまく適用できれば、再帰は、そうでなければ非常に面倒で時間のかかる問題を解決するための優れた味方となります。ここに掲載されている資料は、教育目的のみのものです。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを利用することは避けてください。