Aprendiendo a diseñar un sistema comercial basado en Momentum
En el artículo anterior, mencionamos la importancia de detectar las tendencias, es decir, de determinar la dirección del movimiento del precio. En este artículo, hablaremos sobre otro concepto importante en el trading, que también existe en forma de indicador: el impulso del precio o el indicador Momentum. Asimismo, desarrollaremos nuestro propio sistema comercial basado en este indicador.
Cómo integrar los conceptos de dinero inteligente (Smart Money Concepts, SMC) junto con el indicador RSI en un EA
Concepto de dinero inteligente (ruptura de estructura) junto con el indicador RSI para tomar decisiones comerciales automatizadas informadas basadas en la estructura del mercado.
Redes neuronales: así de sencillo (Parte 32): Aprendizaje Q distribuido
En uno de los artículos de esta serie, nos familiarizamos con el método de aprendizaje Q. Este método promedia las recompensas de cada acción. En 2017 se presentaron dos trabajos que muestran un mayor éxito al estudiar la función de distribución de recompensas. Vamos a analizar la posibilidad de utilizar esta tecnología para resolver nuestros problemas.
Análisis de ciclos usando el algoritmo de Goertzel
En el artículo presentamos utilidades que implementan el algoritmo de Goertzel en MQL5 y dos formas de aplicar este método al analizar cotizaciones de precios para el desarrollo de estrategias.
Gráficos en la biblioteca DoEasy (Parte 84): Clases herederas del objeto gráfico abstracto estándar
En este artículo, analizaremos la creación de las clases herederas del objeto gráfico abstracto estándar del terminal. El objeto de esta clase describirá las propiedades comunes para todos los objetos gráficos, es decir, se tratará simplemente de un cierto objeto gráfico. Para aclarar su pertenencia a un objeto gráfico real, necesitaremos heredar de él, y en la clase del objeto heredado, escribir las propiedades inherentes a ese objeto gráfico en particular.
Analizamos ejemplos de estrategias comerciales en el terminal de cliente
En este artículo, utilizaremos esquemas de bloques para analizar visualmente la lógica de los asesores de entrenamiento adjuntos al terminal, ubicados en la carpeta Experts\Free Robots, que negocian con patrones de velas.
Creación de un modelo de restricción de tendencia de velas (Parte 9): Asesor Experto de múltiples estrategias (I)
Hoy, exploraremos las posibilidades de incorporar múltiples estrategias en un Asesor Experto (Expert Advisor, EA) utilizando MQL5. Los asesores expertos ofrecen capacidades más amplias que solo indicadores y scripts, lo que permite enfoques comerciales más sofisticados que pueden adaptarse a las condiciones cambiantes del mercado. Encuentre más información en este artículo de discusión.
Redes neuronales: así de sencillo (Parte 49): Soft Actor-Critic
Continuamos nuestro análisis de los algoritmos de aprendizaje por refuerzo en problemas de espacio continuo de acciones. En este artículo, le propongo introducir el algoritmo Soft Astog-Critic (SAC). La principal ventaja del SAC es su capacidad para encontrar políticas óptimas que no solo maximicen la recompensa esperada, sino que también tengan la máxima entropía (diversidad) de acciones.
Arbitraje estadístico con predicciones
Daremos un paseo por el arbitraje estadístico, buscaremos con Python símbolos de correlación y cointegración, haremos un indicador para el coeficiente de Pearson y haremos un EA para operar arbitraje estadístico con predicciones hechas con Python y modelos ONNX.
Optimización automatizada de parámetros para estrategias de negociación con Python y MQL5
Existen varios tipos de algoritmos para la autooptimización de estrategias y parámetros de negociación. Estos algoritmos se utilizan para mejorar automáticamente las estrategias de negociación basándose en datos históricos y actuales del mercado. En este artículo veremos uno de ellos con ejemplos en Python y MQL5.
Análisis de múltiples símbolos con Python y MQL5 (Parte I): Fabricantes de circuitos integrados del NASDAQ
Acompáñenos mientras debatimos cómo puede utilizar la IA para optimizar el tamaño de sus posiciones y las cantidades de sus órdenes para maximizar la rentabilidad de su cartera. Mostraremos cómo identificar algorítmicamente una cartera óptima y adaptar su cartera a sus expectativas de rentabilidad o niveles de tolerancia al riesgo. En este debate, utilizaremos la biblioteca SciPy y el lenguaje MQL5 para crear una cartera óptima y diversificada utilizando todos los datos de que disponemos.
Desarrollando un EA comercial desde cero (Parte 08): Un salto conceptual (I)
¿Cómo implementar una nueva funcionalidad de la forma más sencilla posible? Aquí daremos un paso atrás y luego daremos dos pasos adelante.
Desarrollo de un EA comercial desde cero (Parte 28): Rumbo al futuro (III)
Nuestro sistema de órdenes todavía falla en hacer una cosa, pero FINALMENTE lo resolveremos...
Algoritmos de optimización de la población: Algoritmo de siembra y crecimiento de árboles (Saplings Sowing and Growing up — SSG)
El algoritmo de siembra y crecimiento de árboles (SSG) está inspirado en uno de los organismos más resistentes del planeta, que es un ejemplo notable de supervivencia en una amplia variedad de condiciones.
Automatización de estrategias comerciales con la estrategia de tendencia Parabolic SAR en MQL5: Creación de un asesor experto eficaz
En este artículo, automatizaremos las estrategias comerciales con la estrategia Parabolic SAR en MQL5: Creación de un asesor experto eficaz. El EA realizará operaciones basadas en las tendencias identificadas por el indicador Parabolic SAR.
Aprendiendo a diseñar un sistema de trading con Relative Vigor Index
Bienvenidos a un nuevo artículo de nuestra serie dedicada a la creación de sistemas comerciales basados en indicadores técnicos populares. En esta ocasión, analizaremos el Índice de Vigor Relativo (Relative Vigor Index, RVI).
Creamos un asesor multidivisa sencillo utilizando MQL5 (Parte 2): Señales del indicador - Parabolic SAR de marco temporal múltiple
En este artículo, entenderemos por asesor multidivisa un asesor o robot comercial que puede comerciar (abrir/cerrar órdenes, gestionar órdenes, por ejemplo, trailing-stop y trailing-profit, etc.) con más de un par de símbolos de un gráfico. Esta vez usaremos solo un indicador, a saber, Parabolic SAR o iSAR en varios marcos temporales, comenzando desde PERIOD_M15 y terminando con PERIOD_D1.
Gráficos en la biblioteca DoEasy (Parte 75): Métodos de trabajo con primitivas y texto en el elemento gráfico básico
En el presente artículo, continuaremos el desarrollo de la clase de elemento gráfico de todos los elementos gráficos de la biblioteca creados sobre la base de la Biblioteca Estándar CCanvas. En concreto, crearemos los métodos para dibujar las primitivas gráficas y los métodos para mostrar el texto en un objeto de elemento gráfico.
Biblioteca para el desarrollo rápido y sencillo de programas para MetaTrader (Parte VIII): Eventos de modificación de órdenes y posiciones
En artículos anteriores, comenzamos a crear una gran biblioteca multiplataforma, cuyo cometido es simplificar la escritura de programas para las plataformas MetaTrader 5 y MetaTrader 4. En el séptimo artículo, añadimos el seguimiento de los eventos de activación de órdenes StopLimit y preparamos la funcionalidad para monitorear el resto de eventos que tienen lugar con las órdenes y posiciones. En el presente artículo, vamos a crear una clase que monitoreará los eventos de modificación de las órdenes y posiciones de mercado.
Desarrollando un EA comercial desde cero (Parte 22): Un nuevo sistema de órdenes (V)
Hoy seguiremos desarrollando el nuevo sistema de ordenes. No es nada fácil implementar un nuevo sistema, muchas veces nos encontramos con problemas que dificultan mucho el proceso, cuando suceden hay que parar y volver a analizar el rumbo que se está tomando.
Implementación de breakeven en MQL5 (Parte 1): Clase base y breakeven por puntos fijos
En este artículo se estudia el uso del breakeven aplicado a estrategias automáticas en MQL5. Se parte de una explicación sencilla sobre qué es, cómo se implementa y cuáles son sus posibles variantes. Luego, se integra la funcionalidad dentro de un bot de Order Blocks, creado en el último artículo sobre gestión de riesgo. Para evaluar su comportamiento, se ejecutaron dos backtest bajo condiciones específicas: uno sin breakeven y otro con esta función activa.
Redes neuronales: así de sencillo (Parte 20): Autocodificadores
Continuamos analizando los algoritmos de aprendizaje no supervisado. El lector podría preguntarse sobre la relevancia de las publicaciones recientes en el tema de las redes neuronales. En este nuevo artículo, retomaremos el uso de las redes neuronales.
Algoritmos de optimización de la población: Algoritmo de forrajeo bacteriano (Bacterial Foraging Optimisation — BFO)
La estrategia de búsqueda de alimento de la bacteria E.coli inspiró a los científicos para crear el algoritmo de optimización BFO. El algoritmo contiene ideas originales y enfoques prometedores para la optimización y merece ser investigado en profundidad.
Aprendizaje automático y data science (Parte 04): Predicción de una caída bursátil
En este artículo, intentaremos usar nuestro modelo logístico para predecir una caída del mercado de valores según las principales acciones de la economía estadounidense: NETFLIX y APPLE. Analizaremos estas acciones, y también usaremos la información sobre las anteriores caídas del mercado en 2019 y 2020. Veamos cómo funcionará nuestro modelo en las poco favorables condiciones actuales.
Enfoque ideal sobre el desarrollo y el análisis de sistemas comerciales
En el presente artículo, trataremos de mostrar con qué criterio elegir un sistema o señal para invertir nuestro dinero, además de cuál es el mejor enfoque para desarrollar sistemas comerciales y por qué este tema es tan importante en el comercio en fórex.
Redes neuronales: así de sencillo (Parte 21): Autocodificadores variacionales (VAE)
En el anterior artículo, vimos el algoritmo del autocodificador. Como cualquier otro algoritmo, tiene ventajas y desventajas. En la implementación original, el autocodificador se encarga de dividir los objetos de la muestra de entrenamiento tanto como sea posible. Y en este artículo, en cambio, hablaremos de cómo solucionar algunas de sus deficiencias.
Gráficos en la biblioteca DoEasy (Parte 74): Elemento gráfico básico sobre la clase CCanvas
En esta ocasión, vamos a revisar el concepto de construcción de objetos gráficos del artículo anterior y a preparar una clase básica para todos los objetos gráficos de la biblioteca creados sobre la base de la clase CCanvas de la Biblioteca Estándar.
Interfaces gráficas XI: Controles dibujados (build 14.2)
En la nueva versión de la librería, todos los controles van a dibujarse en los objetos gráficos separados tipo OBJ_BITMAP_LABEL. Además, seguiremos describiendo la optimización del código: es decir, analizaremos los cambios en las clases que representan el núcleo de la librería.
Otras clases en la biblioteca DoEasy (Parte 66): Clases de Colección de Señales MQL5.com
En este artículo, crearemos una clase de colección de señales del Servicio de señales de MQL5.com con funciones para gestionar las señales suscritas, y también modificaremos la clase del objeto de instantánea de la profundidad de mercado para mostrar el volumen total de la profundidad de mercado de compra y venta.
Obtenga una ventaja sobre cualquier mercado (Parte II): Predicción de indicadores técnicos
¿Sabía que podemos obtener más precisión pronosticando ciertos indicadores técnicos que prediciendo el precio subyacente de un símbolo negociado? Únase a nosotros para explorar cómo aprovechar esta información para mejorar las estrategias de negociación.
Gráficos en la biblioteca DoEasy (Parte 95): Elementos de control de los objetos gráficos compuestos
En este artículo, analizaremos el instrumental usado para gestionar los objetos gráficos compuestos, a saber, los elementos de gestión del objeto gráfico estándar extendido. Hoy nos desviaremos un poco del tema del desplazamiento de objetos gráficos compuestos y crearemos un manejador de eventos de cambio del gráfico en el que se encuentra el objeto gráfico compuesto; también trabajaremos con los objetos de gestión de objetos gráficos compuestos.
Representaciones en el dominio de la frecuencia de series temporales: El espectro de potencia
En este artículo, veremos métodos asociados con el análisis de series temporales en el dominio de la frecuencia. También prestaremos atención a los beneficios del estudio de las funciones espectrales de series temporales al construir modelos predictivos. Además, analizaremos algunas perspectivas prometedoras para el análisis de series temporales en el dominio de la frecuencia utilizando la transformada discreta de Fourier (DFT).
Múltiples indicadores en un gráfico (Parte 05): Convirtamos el MetaTrader 5 en un sistema RAD (I)
A pesar de no saber programar, muchas personas son bastante creativas y tienen grandes ideas, pero la falta de conocimientos o de entendimiento sobre la programación les impide hacer algunas cosas. Aprenda a crear un Chart Trade, pero utilizando la propia plataforma MT5, como si fuera un IDE.
Aprendiendo MQL5 de principiante a profesional (Parte VI): Fundamentos del desarrollo de asesores expertos
Este artículo continúa la serie para principiantes. Aquí discutiremos los principios básicos del desarrollo de Asesores Expertos (EAs). Crearemos dos EAs: el primero operará sin indicadores, utilizando órdenes pendientes, y el segundo se basará en el indicador MA estándar, abriendo operaciones al precio actual. Aquí doy por sentado que ya no eres un principiante absoluto y que dominas relativamente bien el material de los artículos anteriores.
Todo lo que necesita saber sobre la estructura de un programa MQL5
Cualquier programa en cualquier lenguaje de programación tiene una estructura determinada. En este artículo, aprenderá los componentes principales de la estructura de un programa en MQL5, que pueden resultarle muy útiles a la hora de crear un sistema comercial o una herramienta comercial para MetaTrader 5.
Uso de criptografía con aplicaciones externas
En el presente artículo, analizaremos la encriptación/desencriptación de objetos en MetaTrader y los programas externos para aclarar las condiciones en las que se obtendrán los mismos resultados con los mismos datos iniciales.
Dominando ONNX: Un punto de inflexión para los tráders de MQL5
Sumérjase en el mundo de ONNX, un potente formato abierto para compartir modelos de aprendizaje automático. Descubra cómo el uso de ONNX puede revolucionar el trading algorítmico en MQL5, permitiendo a los tráders integrar sin problemas modelos avanzados de IA y llevar sus estrategias al siguiente nivel. Descubra los secretos de la compatibilidad multiplataforma y aprenda a liberar todo el potencial de ONNX en sus operaciones MQL5. Mejore sus operaciones con esta guía detallada de ONNX.
Gráficos en la biblioteca DoEasy (Parte 93): Preparando la funcionalidad para crear objetos gráficos compuestos
En el presente artículo, comenzaremos a desarrollar la funcionalidad necesaria para crear objetos gráficos compuestos. Nuestra biblioteca ofrecerá soporte a la creación de objetos gráficos compuestos complejos en los que dichos objetos podrán tener cualquier jerarquía de relaciones. Vamos a preparar todas las clases necesarias para la posterior implementación de tales objetos.
Aprendizaje automático y Data Science (Parte 8): Clusterización con el método de k-medias en MQL5
Para todos los que trabajan con datos, incluidos los tráders, la minería de datos puede descubrir posibilidades completamente nuevas, porque a menudo los datos no son tan simples como parecen. Resulta difícil para el ojo humano ver patrones y relaciones profundas en un conjunto de datos. Una solución sería el algoritmo de k-medias o k-means. Veamos si resulta útil.
Biblioteca de análisis numérico ALGLIB en MQL5
En este artículo, echaremos un vistazo rápido a la biblioteca de análisis numérico ALGLIB 3.19, sus aplicaciones y sus nuevos algoritmos, que pueden mejorar la eficiencia del análisis de datos financieros.