Artículos sobre programación y uso de robots comerciales en el lenguaje MQL5

icon

Los Asesores Expertos creados para la plataforma MetaTrader ejecutan una gran variedad de funciones ideadas por sus desarrolladores. Los robots comerciales son capaces de realizar el seguimiento de los instrumentos financieros 24 horas al día, copiar las operaciones, confeccionar y enviar los informes, analizar las noticias, e incluso facilitar al operador una interfaz gráfica personalizada desarrollada por encargo.

Los artículos contienen las técnicas de programación, ideas matemáticas para el procesamiento de datos, consejos para la creación y el encargo de robots comerciales.

Nuevo artículo
últimas | mejores
preview
Algoritmos de optimización de la población: Objetos artificiales de búsqueda multisocial (artificial Multi-Social search Objects, MSO)

Algoritmos de optimización de la población: Objetos artificiales de búsqueda multisocial (artificial Multi-Social search Objects, MSO)

Continuación del artículo anterior como desarrollo de la idea de grupos sociales. El nuevo artículo investiga la evolución de los grupos sociales mediante algoritmos de reubicación y memoria. Los resultados ayudarán a comprender la evolución de los sistemas sociales y a aplicarlos a la optimización y la búsqueda de soluciones.
preview
Asesor Experto Grid-Hedge Modificado en MQL5 (Parte IV): Optimización de la estrategia de cuadrícula simple (I)

Asesor Experto Grid-Hedge Modificado en MQL5 (Parte IV): Optimización de la estrategia de cuadrícula simple (I)

En esta cuarta parte, revisamos los asesores expertos (EA) Simple Hedge y Simple Grid desarrollados anteriormente. Nuestro enfoque se centra en perfeccionar Simple Grid EA a través del análisis matemático y un enfoque de fuerza bruta, apuntando al uso óptimo de la estrategia. Este artículo profundiza en la optimización matemática de la estrategia, preparando el escenario para la futura exploración de la optimización basada en codificación en entregas posteriores.
preview
Redes neuronales: así de sencillo (Parte 69): Restricción de la política de comportamiento basada en la densidad de datos offline (SPOT)

Redes neuronales: así de sencillo (Parte 69): Restricción de la política de comportamiento basada en la densidad de datos offline (SPOT)

En el aprendizaje offline, utilizamos un conjunto de datos fijo, lo que limita la cobertura de la diversidad del entorno. Durante el proceso de aprendizaje, nuestro Agente puede generar acciones fuera de dicho conjunto. Si no hay retroalimentación del entorno, la corrección de las evaluaciones de tales acciones será cuestionable. Mantener la política del Agente dentro de la muestra de entrenamiento se convierte así en un aspecto importante para garantizar la solidez del entrenamiento. De eso hablaremos en este artículo.
preview
Redes neuronales en el trading: Framework comercial híbrido con codificación predictiva (StockFormer)

Redes neuronales en el trading: Framework comercial híbrido con codificación predictiva (StockFormer)

Hoy le presentamos el StockFormer, un sistema comercial híbrido que combina algoritmos de codificación predictiva y de aprendizaje por refuerzo (RL). El framework utiliza 3 ramas del Transformer con un mecanismo Diversified Multi-Head Attention (DMH-Attn) integrado que mejora el módulo de atención vainilla gracias a un bloque Feed-Forward multicabeza que permite captar diversos patrones de series temporales en diferentes subespacios.
preview
Características del Wizard MQL5 que debe conocer (Parte 09): Combinación de clusterización de K-medias con ondas fractales

Características del Wizard MQL5 que debe conocer (Parte 09): Combinación de clusterización de K-medias con ondas fractales

La clusterización de K-medias adopta el enfoque de agrupar puntos de datos como un proceso centrado inicialmente en una macro representación del conjunto de datos en la que se aplican centroides de clúster generados aleatoriamente. A continuación, dichos centroides se escalan y ajustan para representar con precisión el conjunto de datos. En el presente artículo, hablaremos de la clusterización y de varios usos de la misma.
preview
Redes neuronales en el trading: Red neuronal espacio-temporal (STNN)

Redes neuronales en el trading: Red neuronal espacio-temporal (STNN)

En este artículo, hablaremos sobre el uso de transformaciones espacio-temporales para predecir el próximo movimiento de los precios de manera eficaz. Para mejorar la precisión de la predicción numérica en el STNN, hemos propuesto un mecanismo de atención continua que permite al modelo considerar en mayor medida aspectos importantes de los datos.
preview
Redes neuronales en el trading: Agente multimodal con herramientas complementarias (Final)

Redes neuronales en el trading: Agente multimodal con herramientas complementarias (Final)

Seguimos trabajando en la implementación de los algoritmos para el agente multimodal de comercio financiero (FinAgent), diseñado para analizar los datos multimodales de la dinámica de mercado y los patrones comerciales históricos.
preview
Encabezado en Connexus (Parte 3): Dominando el uso de encabezado HTTP para solicitudes WebRequest

Encabezado en Connexus (Parte 3): Dominando el uso de encabezado HTTP para solicitudes WebRequest

Continuamos desarrollando la biblioteca Connexus. En este capítulo, exploramos el concepto de cabeceras en el protocolo HTTP, explicando qué son, para qué sirven y cómo usarlos en las solicitudes. Cubrimos los principales encabezados utilizados en las comunicaciones con API y mostramos ejemplos prácticos de cómo configurarlos en la biblioteca.
preview
Redes neuronales en el trading: Transformador con codificación relativa

Redes neuronales en el trading: Transformador con codificación relativa

El aprendizaje autosupervisado puede ser una forma eficaz de analizar grandes cantidades de datos no segmentados. El principal factor de éxito es la adaptación de los modelos a las particularidades de los mercados financieros, lo cual contribuye a mejorar el rendimiento de los métodos tradicionales. Este artículo le presentará un mecanismo alternativo de atención que permitirá considerar las dependencias y relaciones relativas entre los datos de origen.
preview
Características del Wizard MQL5 que debe conocer (Parte 27): Medias móviles y el ángulo de ataque

Características del Wizard MQL5 que debe conocer (Parte 27): Medias móviles y el ángulo de ataque

El ángulo de ataque es una métrica citada a menudo cuya inclinación se entiende que está estrechamente relacionada con la fuerza de una tendencia predominante. Nos fijamos en cómo se utiliza y se entiende comúnmente y examinamos si hay cambios que podrían introducirse en la forma de medirlo en beneficio de un sistema comercial que lo ponga en uso.
preview
Redes neuronales en el trading: Reducción del consumo de memoria con el método de optimización Adam (Adam-mini)

Redes neuronales en el trading: Reducción del consumo de memoria con el método de optimización Adam (Adam-mini)

Una forma de mejorar la eficacia del proceso de aprendizaje y la convergencia de los modelos es mejorar los métodos de optimización. Adam-mini es un método de optimización adaptativa desarrollado para mejorar el algoritmo Adam básico.
preview
Reimaginando las estrategias clásicas (Parte VI): Análisis de múltiples marcos temporales

Reimaginando las estrategias clásicas (Parte VI): Análisis de múltiples marcos temporales

En esta serie de artículos, revisamos las estrategias clásicas para ver si podemos mejorarlas utilizando IA. En el artículo de hoy, examinaremos la popular estrategia de análisis de múltiples marcos temporales para juzgar si la estrategia se podría mejorar con IA.
preview
Creación de un modelo de restricción de tendencia de velas (Parte 8): Desarrollo de un asesor experto (I)

Creación de un modelo de restricción de tendencia de velas (Parte 8): Desarrollo de un asesor experto (I)

En esta discusión, crearemos nuestro primer Asesor Experto en MQL5 basado en el indicador que creamos en el artículo anterior. Cubriremos todas las características necesarias para automatizar el proceso, incluida la gestión de riesgos. Esto beneficiará ampliamente a los usuarios para pasar de la ejecución manual de operaciones a sistemas automatizados.
preview
Aprendizaje automático y Data Science (Parte 25): Predicción de series temporales de divisas mediante una red neuronal recurrente (RNN)

Aprendizaje automático y Data Science (Parte 25): Predicción de series temporales de divisas mediante una red neuronal recurrente (RNN)

Las redes neuronales recurrentes (RNNs, Recurrent Neural Networks) destacan por aprovechar la información del pasado para predecir acontecimientos futuros. Sus notables capacidades predictivas se han aplicado en diversos ámbitos con gran éxito. En este artículo, utilizaremos modelos RNN para predecir tendencias en el mercado de divisas, demostrando su potencial para mejorar la precisión de las predicciones en el comercio de divisas.
preview
MQL5 Wizard techniques you should know (Part 49): Aprendizaje por refuerzo con optimización de políticas proximales

MQL5 Wizard techniques you should know (Part 49): Aprendizaje por refuerzo con optimización de políticas proximales

La optimización de políticas proximales es otro algoritmo del aprendizaje por refuerzo que actualiza la política, a menudo en forma de red, en pasos incrementales muy pequeños para garantizar la estabilidad del modelo. Examinamos cómo esto podría ser útil, tal y como hemos hecho en artículos anteriores, en un asesor experto creado mediante un asistente.
preview
Añadimos un LLM personalizado a un robot comercial (Parte 5): Desarrolla y prueba una estrategia de trading con LLMs (II), LoRA-Tuning

Añadimos un LLM personalizado a un robot comercial (Parte 5): Desarrolla y prueba una estrategia de trading con LLMs (II), LoRA-Tuning

Con el rápido desarrollo de la inteligencia artificial en la actualidad, los modelos lingüísticos (LLM) son una parte importante de la inteligencia artificial, por lo que deberíamos pensar en cómo integrar potentes LLM en nuestras operaciones algorítmicas. Para la mayoría de la gente, es difícil ajustar estos potentes modelos a sus necesidades, desplegarlos localmente y luego aplicarlos a la negociación algorítmica. Esta serie de artículos adoptará un enfoque paso a paso para lograr este objetivo.
preview
Características del Wizard MQL5 que debe conocer (Parte 44): Indicador técnico Average True Range (ATR)

Características del Wizard MQL5 que debe conocer (Parte 44): Indicador técnico Average True Range (ATR)

El oscilador ATR es un indicador muy popular que actúa como proxy de volatilidad, especialmente en los mercados de divisas, donde los datos de volumen son escasos. Examinamos esto, basándonos en patrones, como hemos hecho con indicadores anteriores, y compartimos estrategias e informes de pruebas gracias a las clases y el ensamblaje de la biblioteca del asistente MQL5.
preview
Cómo crear un panel interactivo MQL5 utilizando la clase Controls (Parte 2): Añadir capacidad de respuesta a los botones

Cómo crear un panel interactivo MQL5 utilizando la clase Controls (Parte 2): Añadir capacidad de respuesta a los botones

En este artículo, nos centramos en transformar nuestro panel de control MQL5 estático en una herramienta interactiva habilitando la capacidad de respuesta de los botones. Exploramos cómo automatizar la funcionalidad de los componentes de la interfaz gráfica de usuario (GUI), asegurándonos de que reaccionen adecuadamente a los clics de los usuarios. Al final del artículo, establecemos una interfaz dinámica que mejora la participación del usuario y la experiencia comercial.
preview
Redes neuronales en el trading: Mejora de la eficiencia del Transformer mediante la reducción de la nitidez (SAMformer)

Redes neuronales en el trading: Mejora de la eficiencia del Transformer mediante la reducción de la nitidez (SAMformer)

El entrenamiento de los modelos de Transformer requiere grandes cantidades de datos y suele ser difícil debido a la escasa capacidad de generalización de los modelos en muestras pequeñas. El framework SAMformer ayuda a resolver este problema evitando los mínimos locales malos, mejorando la eficacia de los modelos incluso con muestras de entrenamiento limitadas.
preview
Redes neuronales en el trading: Modelo hiperbólico de difusión latente (HypDiff)

Redes neuronales en el trading: Modelo hiperbólico de difusión latente (HypDiff)

El artículo estudiará formas de codificar los datos de origen en un espacio latente hiperbólico mediante procesos de difusión anisotrópica. Esto ayudará a preservar con mayor precisión las características topológicas de la situación actual del mercado y mejorará la calidad de su análisis.
preview
Características del Wizard MQL5 que debe conocer (Parte 10). El RBM no convencional

Características del Wizard MQL5 que debe conocer (Parte 10). El RBM no convencional

Las máquinas de Boltzmann restringidas (RBM, Restrictive Boltzmann Machines) son, en el nivel básico, una red neuronal de dos capas que es competente en la clasificación no supervisada a través de la reducción de la dimensionalidad. Tomamos sus principios básicos y examinamos si lo rediseñamos y entrenamos de forma poco ortodoxa, podríamos obtener un filtro de señal útil.
preview
Características del Wizard MQL5 que debe conocer (Parte 35): Regresión de vectores de soporte

Características del Wizard MQL5 que debe conocer (Parte 35): Regresión de vectores de soporte

La regresión de vectores de soporte es una forma idealista de encontrar una función o "hiperplano" que describa mejor la relación entre dos conjuntos de datos. Intentamos aprovechar esto en la previsión de series de tiempo dentro de clases personalizadas del asistente MQL5.
preview
Reimaginando las estrategias clásicas: El petróleo

Reimaginando las estrategias clásicas: El petróleo

En este artículo, revisamos una estrategia clásica de negociación de crudo con el objetivo de mejorarla aprovechando algoritmos de aprendizaje automático supervisado. Construiremos un modelo de mínimos cuadrados para predecir los futuros precios del crudo Brent basándonos en el diferencial entre los precios del crudo Brent y del crudo WTI. Nuestro objetivo es identificar un indicador adelantado de futuros cambios en los precios del Brent.
preview
Reimaginando las estrategias clásicas (Parte V): Análisis de múltiples símbolos en USDZAR

Reimaginando las estrategias clásicas (Parte V): Análisis de múltiples símbolos en USDZAR

En esta serie de artículos, revisamos las estrategias clásicas para ver si podemos mejorarlas utilizando la IA. En el artículo de hoy, examinaremos una estrategia popular de análisis de símbolos múltiples utilizando una cesta de valores correlacionados, nos centraremos en el exótico par de divisas USDZAR.
preview
Redes neuronales en el trading: Agente con memoria multinivel (Final)

Redes neuronales en el trading: Agente con memoria multinivel (Final)

Continuamos el trabajo iniciado de creación del framework FinMem, que utiliza enfoques de memoria multinivel que imitan los procesos cognitivos humanos. Esto permite al modelo no solo procesar eficazmente datos financieros complejos, sino también adaptarse a nuevas señales, mejorando sustancialmente la precisión y eficacia de las decisiones de inversión en mercados que cambian dinámicamente.
preview
Redes neuronales en el trading: Aprendizaje jerárquico de características en nubes de puntos

Redes neuronales en el trading: Aprendizaje jerárquico de características en nubes de puntos

Seguimos estudiando los algoritmos para extraer características de una nube de puntos. Y en este artículo, nos familiarizaremos con los mecanismos para mejorar la eficacia del método PointNet.
preview
Añadimos un LLM personalizado a un robot comercial (Parte 4): Entrena tu propio LLM con GPU

Añadimos un LLM personalizado a un robot comercial (Parte 4): Entrena tu propio LLM con GPU

Con el rápido desarrollo de la inteligencia artificial en la actualidad, los modelos lingüísticos (LLM) son una parte importante de la inteligencia artificial, por lo que deberíamos pensar en cómo integrar potentes LLM en nuestras operaciones algorítmicas. Para la mayoría de la gente, es difícil ajustar estos potentes modelos a sus necesidades, desplegarlos localmente y luego aplicarlos a la negociación algorítmica. Esta serie de artículos abordará paso a paso la consecución de este objetivo.
preview
Desarrollamos un asesor experto multidivisa (Parte 15): Preparamos el asesor experto para el trading real

Desarrollamos un asesor experto multidivisa (Parte 15): Preparamos el asesor experto para el trading real

Al acercarnos gradualmente un asesor experto listo, debemos prestar atención a las cuestiones que son secundarias en la etapa de prueba de la estrategia comercial, pero que se vuelven importantes al pasar a la negociación real.
preview
Redes neuronales: así de sencillo (Parte 72): Predicción de trayectorias en entornos ruidosos

Redes neuronales: así de sencillo (Parte 72): Predicción de trayectorias en entornos ruidosos

La calidad de las predicciones de los estados futuros desempeña un papel importante en el método Goal-Conditioned Predictive Coding, del que hablamos en el artículo anterior. En este artículo quiero presentarte un algoritmo que puede mejorar significativamente la calidad de la predicción en entornos estocásticos, como los mercados financieros.
preview
Operar con el Calendario Económico MQL5 (Parte 2): Creación de un Panel de Noticias

Operar con el Calendario Económico MQL5 (Parte 2): Creación de un Panel de Noticias

En este artículo, creamos un panel de noticias práctico utilizando el Calendario Económico MQL5 para mejorar nuestra estrategia comercial. Comenzamos diseñando el diseño, centrándonos en elementos clave como los nombres de los eventos, la importancia y el tiempo, antes de pasar a la configuración dentro de MQL5. Por último, implementamos un sistema de filtrado para mostrar sólo las noticias más relevantes, brindando a los operadores acceso rápido a eventos económicos impactantes.
preview
Redes neuronales en el trading: Un método complejo de predicción de trayectorias (Traj-LLM)

Redes neuronales en el trading: Un método complejo de predicción de trayectorias (Traj-LLM)

En este artículo, me gustaría presentarles un interesante método de predicción de trayectorias desarrollado para resolver problemas en el campo de los movimientos de vehículos autónomos. Los autores del método combinaron los mejores elementos de varias soluciones arquitectónicas.
preview
Redes neuronales en el trading: Optimización del Transformer para la previsión de series temporales (LSEAttention)

Redes neuronales en el trading: Optimización del Transformer para la previsión de series temporales (LSEAttention)

El framework LSEAttention ofrece formas de mejorar la arquitectura del Transformer, y se ha diseñado específicamente para la previsión a largo plazo de series temporales multidimensionales. Los enfoques propuestos por los autores del método resuelven los problemas de colapso de entropía e inestabilidad de aprendizaje característicos del Transformer vainilla.
preview
Redes neuronales en el trading: Framework comercial híbrido con codificación predictiva (Final)

Redes neuronales en el trading: Framework comercial híbrido con codificación predictiva (Final)

Continuamos nuestro análisis del sistema comercial híbrido StockFormer, que combina codificación predictiva y algoritmos de aprendizaje por refuerzo para el análisis de series temporales financieras. El sistema se basa en tres ramas del Transformer con un mecanismo Diversified Multi-Head Attention (DMH-Attn) que permite identificar patrones complejos y relaciones entre activos. Ya nos hemos familiarizado con los aspectos teóricos del framework e implementado los mecanismos de DMH-Attn, así que hoy hablaremos sobre la arquitectura de los modelos y su entrenamiento.
preview
Características del Wizard MQL5 que debe conocer (Parte 11): Muros numéricos

Características del Wizard MQL5 que debe conocer (Parte 11): Muros numéricos

Los muros numéricos (Number Walls) son una variante de los registros de desplazamiento lineal hacia atrás (Linear Shift Back Registers) que pre-evalúan las secuencias para su predictibilidad mediante la comprobación de la convergencia. Veamos cómo se pueden utilizar estas ideas en MQL5.
preview
Redes neuronales: así de sencillo (Parte 81): Razonamiento de movimiento guiado por el contexto de grueso a fino (CCMR, Coarse-to-Fine Context-Guided Motion Reasoning)

Redes neuronales: así de sencillo (Parte 81): Razonamiento de movimiento guiado por el contexto de grueso a fino (CCMR, Coarse-to-Fine Context-Guided Motion Reasoning)

En trabajos anteriores, siempre evaluábamos el estado actual del entorno. Al mismo tiempo, la dinámica de los cambios en los indicadores siempre permaneció «entre bastidores». En este artículo quiero presentarle un algoritmo que permite evaluar el cambio directo de los datos entre 2 estados ambientales sucesivos.
preview
Redes neuronales en el trading: Segmentación guiada (Final)

Redes neuronales en el trading: Segmentación guiada (Final)

Continuamos el trabajo iniciado en el artículo anterior sobre la construcción del marco RefMask3D usando herramientas MQL5. Este marco está diseñado para explorar de forma exhaustiva la interacción multimodal y analizar las características de una nube de puntos, seguida de la identificación del objeto de destino partiendo de la descripción proporcionada en lenguaje natural.
preview
Marcado de datos en el análisis de series temporales (Parte 6): Aplicación y prueba en EA utilizando ONNX

Marcado de datos en el análisis de series temporales (Parte 6): Aplicación y prueba en EA utilizando ONNX

Esta serie de artículos presenta varios métodos de etiquetado de series temporales, que pueden crear datos que se ajusten a la mayoría de los modelos de inteligencia artificial, y el etiquetado de datos específico según las necesidades puede hacer que el modelo de inteligencia artificial entrenado se ajuste más al diseño esperado, mejorar la precisión de nuestro modelo, ¡e incluso ayudar al modelo a dar un salto cualitativo!
preview
Características del Wizard MQL5 que debe conocer (Parte 17): Negociación con multidivisas

Características del Wizard MQL5 que debe conocer (Parte 17): Negociación con multidivisas

La negociación con varias divisas no está disponible por defecto cuando se crea un asesor experto mediante el asistente. Examinamos dos posibles trucos que los operadores pueden utilizar para poner a prueba sus ideas con más de un símbolo a la vez.
preview
Redes neuronales en el trading: Superpoint Transformer (SPFormer)

Redes neuronales en el trading: Superpoint Transformer (SPFormer)

En este artículo, nos familiarizaremos con un método de segmentación de objetos 3D basado en el Superpoint Transformer (SPFormer), que elimina la necesidad de agregar datos intermedios, lo cual acelera el proceso de segmentación y mejora el rendimiento del modelo.
preview
Redes neuronales en el trading: Modelo adaptativo multiagente (Final)

Redes neuronales en el trading: Modelo adaptativo multiagente (Final)

En el artículo anterior, nos familiarizamos con el framework MASA, un framework adaptativo multiagente que combina enfoques de aprendizaje por refuerzo y estrategias adaptativas para ofrecer un equilibrio armonioso entre rentabilidad y riesgo en condiciones de mercado turbulentas. Asimismo, construimos la funcionalidad de los agentes individuales de este framework. En este artículo continuaremos el trabajo empezado, llevándolo a su conclusión lógica.