Artículos sobre programación y uso de robots comerciales en el lenguaje MQL5

icon

Los Asesores Expertos creados para la plataforma MetaTrader ejecutan una gran variedad de funciones ideadas por sus desarrolladores. Los robots comerciales son capaces de realizar el seguimiento de los instrumentos financieros 24 horas al día, copiar las operaciones, confeccionar y enviar los informes, analizar las noticias, e incluso facilitar al operador una interfaz gráfica personalizada desarrollada por encargo.

Los artículos contienen las técnicas de programación, ideas matemáticas para el procesamiento de datos, consejos para la creación y el encargo de robots comerciales.

Nuevo artículo
últimas | mejores
preview
Características del Wizard MQL5 que debe conocer (Parte 34): Incorporación de precios con un RBM no convencional

Características del Wizard MQL5 que debe conocer (Parte 34): Incorporación de precios con un RBM no convencional

Las Máquinas de Boltzmann Restringidas (Restricted Boltzmann Machines, RBMs) son un tipo de red neuronal desarrollada a mediados de la década de 1980, en una época en la que los recursos computacionales eran extremadamente costosos.. Desde sus inicios, se basó en el muestreo de Gibbs y la divergencia contrastiva para reducir la dimensionalidad o capturar las probabilidades y propiedades ocultas en los conjuntos de datos de entrenamiento. Analizamos cómo la retropropagación puede lograr un rendimiento similar cuando la RBM "incorpora" precios en un perceptrón multicapa para pronósticos.
preview
Implementación de los cierres parciales en MQL5

Implementación de los cierres parciales en MQL5

En este artículo se desarrolla una clase para gestionar cierres parciales en MQL5 y se integra dentro de un EA de order blocks. Además, se presentan pruebas de backtest comparando la estrategia con y sin parciales, analizando en qué condiciones su uso puede maximizar y asegurar beneficios. Concluimos que especialmente en estilos de trading orientados a movimientos más amplios, el uso de parciales podría ser beneficioso.
preview
Redes neuronales: así de sencillo (Parte 95): Reducción del consumo de memoria en los modelos de transformadores

Redes neuronales: así de sencillo (Parte 95): Reducción del consumo de memoria en los modelos de transformadores

Los modelos basados en la arquitectura de transformadores demuestran una gran eficacia, pero su uso se complica por el elevado coste de los recursos tanto en la fase de formación como durante el funcionamiento. En este artículo, propongo familiarizarse con los algoritmos que permiten reducir el uso de memoria de tales modelos.
preview
Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 6): Recolector de señales de reversión a la media

Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 6): Recolector de señales de reversión a la media

Aunque algunos conceptos pueden parecer sencillos a primera vista, ponerlos en práctica puede resultar bastante complicado. En el siguiente artículo, le guiaremos a través de nuestro innovador enfoque para automatizar un Asesor Experto (Expert Advisor, EA) que analiza hábilmente el mercado utilizando una estrategia de reversión a la media. Acompáñenos mientras desentrañamos las complejidades de este apasionante proceso de automatización.
preview
MQL5 Wizard techniques you should know (Part 49): Aprendizaje por refuerzo con optimización de políticas proximales

MQL5 Wizard techniques you should know (Part 49): Aprendizaje por refuerzo con optimización de políticas proximales

La optimización de políticas proximales es otro algoritmo del aprendizaje por refuerzo que actualiza la política, a menudo en forma de red, en pasos incrementales muy pequeños para garantizar la estabilidad del modelo. Examinamos cómo esto podría ser útil, tal y como hemos hecho en artículos anteriores, en un asesor experto creado mediante un asistente.
preview
Características del Wizard MQL5 que debe conocer (Parte 29): Continuación sobre las tasas de aprendizaje con MLP

Características del Wizard MQL5 que debe conocer (Parte 29): Continuación sobre las tasas de aprendizaje con MLP

Concluimos nuestro análisis de la sensibilidad de la tasa de aprendizaje al rendimiento de los Asesores Expertos examinando principalmente las Tasas de Aprendizaje Adaptativo. Estas tasas de aprendizaje pretenden personalizarse para cada parámetro de una capa durante el proceso de entrenamiento, por lo que evaluamos los beneficios potenciales frente al peaje de rendimiento esperado.
preview
Encabezado en Connexus (Parte 3): Dominando el uso de encabezado HTTP para solicitudes WebRequest

Encabezado en Connexus (Parte 3): Dominando el uso de encabezado HTTP para solicitudes WebRequest

Continuamos desarrollando la biblioteca Connexus. En este capítulo, exploramos el concepto de cabeceras en el protocolo HTTP, explicando qué son, para qué sirven y cómo usarlos en las solicitudes. Cubrimos los principales encabezados utilizados en las comunicaciones con API y mostramos ejemplos prácticos de cómo configurarlos en la biblioteca.
preview
La estrategia comercial de captura de liquidez

La estrategia comercial de captura de liquidez

La estrategia de negociación basada en la captura de liquidez es un componente clave de Smart Money Concepts (SMC), que busca identificar y aprovechar las acciones de los actores institucionales en el mercado. Implica apuntar a áreas de alta liquidez, como zonas de soporte o resistencia, donde las órdenes grandes pueden desencadenar movimientos de precios antes de que el mercado reanude su tendencia. Este artículo explica en detalle el concepto de «liquidity grab» (captura de liquidez) y describe el proceso de desarrollo de la estrategia de negociación basada en la captura de liquidez en MQL5.
preview
Características del Wizard MQL5 que debe conocer (Parte 44): Indicador técnico Average True Range (ATR)

Características del Wizard MQL5 que debe conocer (Parte 44): Indicador técnico Average True Range (ATR)

El oscilador ATR es un indicador muy popular que actúa como proxy de volatilidad, especialmente en los mercados de divisas, donde los datos de volumen son escasos. Examinamos esto, basándonos en patrones, como hemos hecho con indicadores anteriores, y compartimos estrategias e informes de pruebas gracias a las clases y el ensamblaje de la biblioteca del asistente MQL5.
preview
Filtrado de estacionalidad y período de tiempo para modelos de Deep Learning ONNX con Python para EA

Filtrado de estacionalidad y período de tiempo para modelos de Deep Learning ONNX con Python para EA

¿Podemos beneficiarnos de la estacionalidad al crear modelos para Deep Learning con Python? ¿Ayuda el filtrado de datos para los modelos ONNX a obtener mejores resultados? ¿Qué periodo de tiempo debemos utilizar? Trataremos todo esto a lo largo de este artículo.
preview
Redes neuronales en el trading: Transformador vectorial jerárquico (HiVT)

Redes neuronales en el trading: Transformador vectorial jerárquico (HiVT)

Hoy proponemos al lector introducir el método del transformador vectorial jerárquico (HiVT), desarrollado para la previsión rápida y precisa de series temporales multimodales.
preview
Características del Wizard MQL5 que debe conocer (Parte 24): Medias móviles

Características del Wizard MQL5 que debe conocer (Parte 24): Medias móviles

Las medias móviles son un indicador muy común que la mayoría de los operadores utilizan y comprenden. Exploramos posibles casos de uso menos comunes dentro de los Asesores Expertos disponibles en el Asistente de MQL5.
preview
Asesor Experto Grid-Hedge Modificado en MQL5 (Parte IV): Optimización de la estrategia de cuadrícula simple (I)

Asesor Experto Grid-Hedge Modificado en MQL5 (Parte IV): Optimización de la estrategia de cuadrícula simple (I)

En esta cuarta parte, revisamos los asesores expertos (EA) Simple Hedge y Simple Grid desarrollados anteriormente. Nuestro enfoque se centra en perfeccionar Simple Grid EA a través del análisis matemático y un enfoque de fuerza bruta, apuntando al uso óptimo de la estrategia. Este artículo profundiza en la optimización matemática de la estrategia, preparando el escenario para la futura exploración de la optimización basada en codificación en entregas posteriores.
preview
Redes neuronales en el trading: Transformador contrastivo de patrones (Final)

Redes neuronales en el trading: Transformador contrastivo de patrones (Final)

En el último artículo de nuestra serie, analizamos el framework Atom-Motif Contrastive Transformer (AMCT), que usa el aprendizaje contrastivo para identificar patrones clave a todos los niveles, desde los elementos básicos hasta las estructuras complejas. En este artículo, continuaremos con la implementación de los enfoques AMCT usando MQL5.
preview
Automatización de estrategias de trading en MQL5 (Parte 2): El sistema Kumo Breakout con Ichimoku y Awesome Oscillator

Automatización de estrategias de trading en MQL5 (Parte 2): El sistema Kumo Breakout con Ichimoku y Awesome Oscillator

En este artículo, creamos un Asesor Experto (EA) que automatiza la estrategia Kumo Breakout utilizando el indicador Ichimoku Kinko Hyo y el Awesome Oscillator. Recorremos el proceso de inicialización de los indicadores, detección de condiciones de ruptura y codificación de entradas y salidas automáticas en las operaciones. Además, implementamos trailing stops y lógica de gestión de posiciones para mejorar el rendimiento del EA y su adaptabilidad a las condiciones del mercado.
preview
Redes neuronales: así de sencillo (Parte 55): Control interno contrastado (CIC)

Redes neuronales: así de sencillo (Parte 55): Control interno contrastado (CIC)

El aprendizaje contrastivo (Contrastive learning) supone un método de aprendizaje de representación no supervisado. Su objetivo consiste en entrenar un modelo para que destaque las similitudes y diferencias entre los conjuntos de datos. En este artículo, hablaremos del uso de enfoques de aprendizaje contrastivo para investigar las distintas habilidades del Actor.
preview
Redes neuronales en el trading: Agente con memoria multinivel (Final)

Redes neuronales en el trading: Agente con memoria multinivel (Final)

Continuamos el trabajo iniciado de creación del framework FinMem, que utiliza enfoques de memoria multinivel que imitan los procesos cognitivos humanos. Esto permite al modelo no solo procesar eficazmente datos financieros complejos, sino también adaptarse a nuevas señales, mejorando sustancialmente la precisión y eficacia de las decisiones de inversión en mercados que cambian dinámicamente.
preview
Características del Wizard MQL5 que debe conocer (Parte 31): Selección de la función de pérdida

Características del Wizard MQL5 que debe conocer (Parte 31): Selección de la función de pérdida

La función de pérdida es la métrica clave de los algoritmos de aprendizaje automático que proporciona información al proceso de formación cuantificando el rendimiento de un conjunto determinado de parámetros en comparación con el objetivo previsto. Exploramos los distintos formatos de esta función en una clase de asistente personalizada MQL5.
preview
Redes neuronales en el trading: Red neuronal espacio-temporal (STNN)

Redes neuronales en el trading: Red neuronal espacio-temporal (STNN)

En este artículo, hablaremos sobre el uso de transformaciones espacio-temporales para predecir el próximo movimiento de los precios de manera eficaz. Para mejorar la precisión de la predicción numérica en el STNN, hemos propuesto un mecanismo de atención continua que permite al modelo considerar en mayor medida aspectos importantes de los datos.
preview
Creación de un modelo de restricción de tendencia de velas (Parte 8): Desarrollo de un asesor experto (I)

Creación de un modelo de restricción de tendencia de velas (Parte 8): Desarrollo de un asesor experto (I)

En esta discusión, crearemos nuestro primer Asesor Experto en MQL5 basado en el indicador que creamos en el artículo anterior. Cubriremos todas las características necesarias para automatizar el proceso, incluida la gestión de riesgos. Esto beneficiará ampliamente a los usuarios para pasar de la ejecución manual de operaciones a sistemas automatizados.
preview
Redes neuronales en el trading: Transformador con codificación relativa

Redes neuronales en el trading: Transformador con codificación relativa

El aprendizaje autosupervisado puede ser una forma eficaz de analizar grandes cantidades de datos no segmentados. El principal factor de éxito es la adaptación de los modelos a las particularidades de los mercados financieros, lo cual contribuye a mejorar el rendimiento de los métodos tradicionales. Este artículo le presentará un mecanismo alternativo de atención que permitirá considerar las dependencias y relaciones relativas entre los datos de origen.
preview
Añadimos un LLM personalizado a un robot comercial (Parte 5): Desarrolla y prueba una estrategia de trading con LLMs (II), LoRA-Tuning

Añadimos un LLM personalizado a un robot comercial (Parte 5): Desarrolla y prueba una estrategia de trading con LLMs (II), LoRA-Tuning

Con el rápido desarrollo de la inteligencia artificial en la actualidad, los modelos lingüísticos (LLM) son una parte importante de la inteligencia artificial, por lo que deberíamos pensar en cómo integrar potentes LLM en nuestras operaciones algorítmicas. Para la mayoría de la gente, es difícil ajustar estos potentes modelos a sus necesidades, desplegarlos localmente y luego aplicarlos a la negociación algorítmica. Esta serie de artículos adoptará un enfoque paso a paso para lograr este objetivo.
preview
Redes neuronales: así de sencillo (Parte 69): Restricción de la política de comportamiento basada en la densidad de datos offline (SPOT)

Redes neuronales: así de sencillo (Parte 69): Restricción de la política de comportamiento basada en la densidad de datos offline (SPOT)

En el aprendizaje offline, utilizamos un conjunto de datos fijo, lo que limita la cobertura de la diversidad del entorno. Durante el proceso de aprendizaje, nuestro Agente puede generar acciones fuera de dicho conjunto. Si no hay retroalimentación del entorno, la corrección de las evaluaciones de tales acciones será cuestionable. Mantener la política del Agente dentro de la muestra de entrenamiento se convierte así en un aspecto importante para garantizar la solidez del entrenamiento. De eso hablaremos en este artículo.
preview
Características del Wizard MQL5 que debe conocer (Parte 27): Medias móviles y el ángulo de ataque

Características del Wizard MQL5 que debe conocer (Parte 27): Medias móviles y el ángulo de ataque

El ángulo de ataque es una métrica citada a menudo cuya inclinación se entiende que está estrechamente relacionada con la fuerza de una tendencia predominante. Nos fijamos en cómo se utiliza y se entiende comúnmente y examinamos si hay cambios que podrían introducirse en la forma de medirlo en beneficio de un sistema comercial que lo ponga en uso.
preview
Añadimos un LLM personalizado a un robot comercial (Parte 4): Entrena tu propio LLM con GPU

Añadimos un LLM personalizado a un robot comercial (Parte 4): Entrena tu propio LLM con GPU

Con el rápido desarrollo de la inteligencia artificial en la actualidad, los modelos lingüísticos (LLM) son una parte importante de la inteligencia artificial, por lo que deberíamos pensar en cómo integrar potentes LLM en nuestras operaciones algorítmicas. Para la mayoría de la gente, es difícil ajustar estos potentes modelos a sus necesidades, desplegarlos localmente y luego aplicarlos a la negociación algorítmica. Esta serie de artículos abordará paso a paso la consecución de este objetivo.
preview
Aprendizaje automático y Data Science (Parte 25): Predicción de series temporales de divisas mediante una red neuronal recurrente (RNN)

Aprendizaje automático y Data Science (Parte 25): Predicción de series temporales de divisas mediante una red neuronal recurrente (RNN)

Las redes neuronales recurrentes (RNNs, Recurrent Neural Networks) destacan por aprovechar la información del pasado para predecir acontecimientos futuros. Sus notables capacidades predictivas se han aplicado en diversos ámbitos con gran éxito. En este artículo, utilizaremos modelos RNN para predecir tendencias en el mercado de divisas, demostrando su potencial para mejorar la precisión de las predicciones en el comercio de divisas.
preview
Características del Wizard MQL5 que debe conocer (Parte 09): Combinación de clusterización de K-medias con ondas fractales

Características del Wizard MQL5 que debe conocer (Parte 09): Combinación de clusterización de K-medias con ondas fractales

La clusterización de K-medias adopta el enfoque de agrupar puntos de datos como un proceso centrado inicialmente en una macro representación del conjunto de datos en la que se aplican centroides de clúster generados aleatoriamente. A continuación, dichos centroides se escalan y ajustan para representar con precisión el conjunto de datos. En el presente artículo, hablaremos de la clusterización y de varios usos de la misma.
preview
Algoritmos de optimización de la población: Objetos artificiales de búsqueda multisocial (artificial Multi-Social search Objects, MSO)

Algoritmos de optimización de la población: Objetos artificiales de búsqueda multisocial (artificial Multi-Social search Objects, MSO)

Continuación del artículo anterior como desarrollo de la idea de grupos sociales. El nuevo artículo investiga la evolución de los grupos sociales mediante algoritmos de reubicación y memoria. Los resultados ayudarán a comprender la evolución de los sistemas sociales y a aplicarlos a la optimización y la búsqueda de soluciones.
preview
Operar con el Calendario Económico MQL5 (Parte 2): Creación de un Panel de Noticias

Operar con el Calendario Económico MQL5 (Parte 2): Creación de un Panel de Noticias

En este artículo, creamos un panel de noticias práctico utilizando el Calendario Económico MQL5 para mejorar nuestra estrategia comercial. Comenzamos diseñando el diseño, centrándonos en elementos clave como los nombres de los eventos, la importancia y el tiempo, antes de pasar a la configuración dentro de MQL5. Por último, implementamos un sistema de filtrado para mostrar sólo las noticias más relevantes, brindando a los operadores acceso rápido a eventos económicos impactantes.
preview
Reimaginando las estrategias clásicas (Parte VI): Análisis de múltiples marcos temporales

Reimaginando las estrategias clásicas (Parte VI): Análisis de múltiples marcos temporales

En esta serie de artículos, revisamos las estrategias clásicas para ver si podemos mejorarlas utilizando IA. En el artículo de hoy, examinaremos la popular estrategia de análisis de múltiples marcos temporales para juzgar si la estrategia se podría mejorar con IA.
preview
Redes neuronales en el trading: Aprendizaje contextual aumentado por memoria (MacroHFT)

Redes neuronales en el trading: Aprendizaje contextual aumentado por memoria (MacroHFT)

Hoy le propongo familiarizarse con el framework MacroHFT, que aplica el aprendizaje por refuerzo dependiente del contexto y la memoria para mejorar las decisiones en el comercio de criptodivisas de alta frecuencia utilizando datos macroeconómicos y agentes adaptativos.
preview
Redes neuronales en el trading: Modelos bidimensionales del espacio de enlaces (Quimera)

Redes neuronales en el trading: Modelos bidimensionales del espacio de enlaces (Quimera)

Descubra el innovador framework Chimera, un modelo bidimensional de espacio de estados que utiliza redes neuronales para analizar series temporales multivariantes. Este método ofrece una gran precisión con un bajo coste computacional, superando a los enfoques tradicionales y a las arquitecturas de Transformer.
preview
Desarrollamos un asesor experto multidivisa (Parte 15): Preparamos el asesor experto para el trading real

Desarrollamos un asesor experto multidivisa (Parte 15): Preparamos el asesor experto para el trading real

Al acercarnos gradualmente un asesor experto listo, debemos prestar atención a las cuestiones que son secundarias en la etapa de prueba de la estrategia comercial, pero que se vuelven importantes al pasar a la negociación real.
preview
Redes neuronales en el trading: Optimización del Transformer para la previsión de series temporales (LSEAttention)

Redes neuronales en el trading: Optimización del Transformer para la previsión de series temporales (LSEAttention)

El framework LSEAttention ofrece formas de mejorar la arquitectura del Transformer, y se ha diseñado específicamente para la previsión a largo plazo de series temporales multidimensionales. Los enfoques propuestos por los autores del método resuelven los problemas de colapso de entropía e inestabilidad de aprendizaje característicos del Transformer vainilla.
preview
Características del Wizard MQL5 que debe conocer (Parte 53): Market Facilitation Index (MFI)

Características del Wizard MQL5 que debe conocer (Parte 53): Market Facilitation Index (MFI)

El Market Facilitation Index (MFI) es otro indicador de Bill Williams que tiene como objetivo medir la eficiencia del movimiento de los precios en relación con el volumen. Como siempre, analizamos los distintos patrones de este indicador dentro de los límites de una clase de señales de ensamblaje del asistente y presentamos una variedad de informes de pruebas y análisis para los distintos patrones.
preview
La estrategia de negociación de la brecha del valor razonable inverso (Inverse Fair Value Gap, IFVG)

La estrategia de negociación de la brecha del valor razonable inverso (Inverse Fair Value Gap, IFVG)

Una brecha inversa del valor razonable (Inverse Fair Value Gap, IFVG) se produce cuando el precio vuelve a una brecha del valor razonable identificada previamente y, en lugar de mostrar la reacción de apoyo o resistencia esperada, no la respeta. Este comportamiento puede indicar un posible cambio en la dirección del mercado y ofrecer una ventaja comercial contraria. En este artículo, voy a presentar mi enfoque, desarrollado por mí mismo, para cuantificar y utilizar la brecha inversa del valor razonable como estrategia para los asesores expertos de MetaTrader 5.
preview
Redes neuronales en el trading: Mejora de la eficiencia del Transformer mediante la reducción de la nitidez (SAMformer)

Redes neuronales en el trading: Mejora de la eficiencia del Transformer mediante la reducción de la nitidez (SAMformer)

El entrenamiento de los modelos de Transformer requiere grandes cantidades de datos y suele ser difícil debido a la escasa capacidad de generalización de los modelos en muestras pequeñas. El framework SAMformer ayuda a resolver este problema evitando los mínimos locales malos, mejorando la eficacia de los modelos incluso con muestras de entrenamiento limitadas.
preview
Redes neuronales en el trading: Framework comercial híbrido con codificación predictiva (Final)

Redes neuronales en el trading: Framework comercial híbrido con codificación predictiva (Final)

Continuamos nuestro análisis del sistema comercial híbrido StockFormer, que combina codificación predictiva y algoritmos de aprendizaje por refuerzo para el análisis de series temporales financieras. El sistema se basa en tres ramas del Transformer con un mecanismo Diversified Multi-Head Attention (DMH-Attn) que permite identificar patrones complejos y relaciones entre activos. Ya nos hemos familiarizado con los aspectos teóricos del framework e implementado los mecanismos de DMH-Attn, así que hoy hablaremos sobre la arquitectura de los modelos y su entrenamiento.
preview
Características del Wizard MQL5 que debe conocer (Parte 35): Regresión de vectores de soporte

Características del Wizard MQL5 que debe conocer (Parte 35): Regresión de vectores de soporte

La regresión de vectores de soporte es una forma idealista de encontrar una función o "hiperplano" que describa mejor la relación entre dos conjuntos de datos. Intentamos aprovechar esto en la previsión de series de tiempo dentro de clases personalizadas del asistente MQL5.
preview
Creación de un modelo de restricción de tendencia de velas (Parte 9): Asesor Experto de múltiples estrategias (II)

Creación de un modelo de restricción de tendencia de velas (Parte 9): Asesor Experto de múltiples estrategias (II)

El número de estrategias que se pueden integrar en un Asesor Experto es prácticamente ilimitado. Sin embargo, cada estrategia adicional aumenta la complejidad del algoritmo. Al incorporar múltiples estrategias, un Asesor Experto puede adaptarse mejor a las condiciones cambiantes del mercado, lo que puede mejorar su rentabilidad. Hoy exploraremos cómo implementar MQL5 para una de las estrategias más destacadas desarrolladas por Richard Donchian, mientras continuamos mejorando la funcionalidad de nuestro Asesor Experto Trend Constraint.