

Gráficos en la biblioteca DoEasy (Parte 73): Objeto de formulario del elemento gráfico
En el presente artículo, iniciaremos un nuevo apartado del trabajo con gráficos. En esta ocasión, vamos a crear el objeto de estado del ratón, el objeto básico de todos los elementos gráficos y la clase de objeto de formulario de los elementos gráficos de la biblioteca.

Gestor de riesgos para el trading algorítmico
Los objetivos de este artículo son: demostrar por qué el uso del gestor de riesgos es algo imprescindible, adaptar los principios del riesgo controlado en el trading algorítmico en una clase aparte, de modo que todo el mundo pueda comprobar de forma independiente la eficacia del enfoque de racionamiento del riesgo en el trading intradía y la inversión en los mercados financieros. En este artículo, detallaremos la escritura de una clase de gestor de riesgos para el trading algorítmico como continuación del artículo anterior sobre la escritura de un gestor de riesgos para el trading manual.

Ejemplo de optimización estocástica y control óptimo
Este Asesor Experto, llamado SMOC, que significa Stochastic Model Optimal Control (Modelo Estocástico de Control Óptimo), es un ejemplo sencillo de un avanzado sistema algorítmico de trading para MetaTrader 5. Utiliza una combinación de indicadores técnicos, control predictivo de modelos y gestión dinámica de riesgos para tomar decisiones comerciales. El EA incorpora parámetros adaptativos, dimensionamiento de posiciones basado en la volatilidad y análisis de tendencias para optimizar su rendimiento en diferentes condiciones de mercado.

Aproximación por fuerza bruta a la búsqueda de patrones (Parte II): Nuevos horizontes
Este artículo prosigue con el tema de la fuerza bruta, ofreciendo al algoritmo de nuestro programa nuevas posibilidades para el análisis de mercado, y acelerando la velocidad de análisis y la calidad de los resultados finales, lo cual brinda un punto de vista de máxima calidad sobre los patrones globales en el marco de este enfoque.

Creamos un asesor multidivisa sencillo utilizando MQL5 (Parte 4): Media móvil triangular - Señales del indicador
Por asesor multidivisa en este artículo entendemos un asesor, o un robot comercial que puede operar (abrir/cerrar órdenes, gestionar órdenes como Trailing Stop Loss y Trailing Profit) con más de un par de símbolos desde un gráfico. Esta vez usaremos un solo indicador, a saber, la media móvil triangular en uno o varios marcos temporales.

Patrones de diseño en MQL5 (Parte 2): Patrones estructurales
En este artículo, seguiremos estudiando los patrones de diseño que permiten a los desarrolladores crear aplicaciones extensibles y fiables no solo en MQL5, sino también en otros lenguajes de programación. Esta vez hablaremos de un tipo diferente: los patrones estructurales. Asimismo, aprenderemos a diseñar sistemas usando las clases disponibles para formar estructuras mayores.

Redes neuronales: así de sencillo (Parte 80): Modelo generativo y adversarial del Transformador de grafos (GTGAN)
En este artículo, le presentamos el algoritmo GTGAN, introducido en enero de 2024 para resolver problemas complejos de disposición arquitectónica con restricciones gráficas.

Estrategia comercial con el indicador de mejora de reconocimiento de velas Doji
El indicador sobre metabarras ha detectado más velas que el clásico. Veamos si aporta un beneficio real en el trading automatizado.

Patrones de diseño en MQL5 (Parte I): Patrones de creación (Creational Patterns)
Existen métodos que pueden usarse para resolver problemas típicos. Una vez entendemos cómo utilizar estas técnicas una vez, podemos escribir programas de forma eficaz y aplicar el concepto DRY (No te repitas, en inglés, don't repeat yourself). En este contexto, resultan muy útiles los patrones de diseño que pueden aportar soluciones a problemas bien descritos y recurrentes.

Desarrollando un EA comercial desde cero (Parte 11): Sistema de órdenes cruzadas
Creación de un sistema de órdenes cruzadas. Hay una clase de activos que les hace la vida muy difícil a los comerciantes, estos son los activos de contratos futuros, y ¿por qué le hacen la vida difícil al comerciante?

Introducción a MQL5 (Parte 2): Variables predefinidas, funciones comunes y operadores de flujo de control
En este artículo, seguiremos familiarizándonos con el lenguaje de programación MQL5. Esta serie de artículos no es solo un tutorial, sino también una puerta de entrada al mundo de la programación. ¿Qué hace especiales a estos artículos? Hemos procurado que las explicaciones sean sencillas para que los conceptos complejos resulten accesibles a todos. Aunque el material es accesible, para obtener los mejores resultados será necesario reproducir activamente todo lo que vamos a tratar. Solo así obtendremos el máximo beneficio de estos artículos.

Redes neuronales: así de sencillo (Parte 32): Aprendizaje Q distribuido
En uno de los artículos de esta serie, nos familiarizamos con el método de aprendizaje Q. Este método promedia las recompensas de cada acción. En 2017 se presentaron dos trabajos que muestran un mayor éxito al estudiar la función de distribución de recompensas. Vamos a analizar la posibilidad de utilizar esta tecnología para resolver nuestros problemas.

Desarrollo de un EA comercial desde cero (Parte 28): Rumbo al futuro (III)
Nuestro sistema de órdenes todavía falla en hacer una cosa, pero FINALMENTE lo resolveremos...


Aprendiendo a diseñar un sistema comercial basado en Momentum
En el artículo anterior, mencionamos la importancia de detectar las tendencias, es decir, de determinar la dirección del movimiento del precio. En este artículo, hablaremos sobre otro concepto importante en el trading, que también existe en forma de indicador: el impulso del precio o el indicador Momentum. Asimismo, desarrollaremos nuestro propio sistema comercial basado en este indicador.


Gráficos en la biblioteca DoEasy (Parte 75): Métodos de trabajo con primitivas y texto en el elemento gráfico básico
En el presente artículo, continuaremos el desarrollo de la clase de elemento gráfico de todos los elementos gráficos de la biblioteca creados sobre la base de la Biblioteca Estándar CCanvas. En concreto, crearemos los métodos para dibujar las primitivas gráficas y los métodos para mostrar el texto en un objeto de elemento gráfico.

Cómo construir un EA que opere automáticamente (Parte 14): Automatización (VI)
Aquí pondremos realmente en práctica todos los conocimientos de esta serie. Finalmente construiremos un sistema 100% automático y funcional. Pero para hacer esto, tendrás que aprender una última cosa.

Aprendiendo a diseñar un sistema de trading con Relative Vigor Index
Bienvenidos a un nuevo artículo de nuestra serie dedicada a la creación de sistemas comerciales basados en indicadores técnicos populares. En esta ocasión, analizaremos el Índice de Vigor Relativo (Relative Vigor Index, RVI).

Automatización de estrategias comerciales con la estrategia de tendencia Parabolic SAR en MQL5: Creación de un asesor experto eficaz
En este artículo, automatizaremos las estrategias comerciales con la estrategia Parabolic SAR en MQL5: Creación de un asesor experto eficaz. El EA realizará operaciones basadas en las tendencias identificadas por el indicador Parabolic SAR.

Desarrollando un EA comercial desde cero (Parte 08): Un salto conceptual (I)
¿Cómo implementar una nueva funcionalidad de la forma más sencilla posible? Aquí daremos un paso atrás y luego daremos dos pasos adelante.

Redes neuronales: así de sencillo (Parte 49): Soft Actor-Critic
Continuamos nuestro análisis de los algoritmos de aprendizaje por refuerzo en problemas de espacio continuo de acciones. En este artículo, le propongo introducir el algoritmo Soft Astog-Critic (SAC). La principal ventaja del SAC es su capacidad para encontrar políticas óptimas que no solo maximicen la recompensa esperada, sino que también tengan la máxima entropía (diversidad) de acciones.

Aprendizaje automático y data science (Parte 04): Predicción de una caída bursátil
En este artículo, intentaremos usar nuestro modelo logístico para predecir una caída del mercado de valores según las principales acciones de la economía estadounidense: NETFLIX y APPLE. Analizaremos estas acciones, y también usaremos la información sobre las anteriores caídas del mercado en 2019 y 2020. Veamos cómo funcionará nuestro modelo en las poco favorables condiciones actuales.


Gráficos en la biblioteca DoEasy (Parte 74): Elemento gráfico básico sobre la clase CCanvas
En esta ocasión, vamos a revisar el concepto de construcción de objetos gráficos del artículo anterior y a preparar una clase básica para todos los objetos gráficos de la biblioteca creados sobre la base de la clase CCanvas de la Biblioteca Estándar.

Desarrollando un EA comercial desde cero (Parte 22): Un nuevo sistema de órdenes (V)
Hoy seguiremos desarrollando el nuevo sistema de ordenes. No es nada fácil implementar un nuevo sistema, muchas veces nos encontramos con problemas que dificultan mucho el proceso, cuando suceden hay que parar y volver a analizar el rumbo que se está tomando.

Redes neuronales: así de sencillo (Parte 20): Autocodificadores
Continuamos analizando los algoritmos de aprendizaje no supervisado. El lector podría preguntarse sobre la relevancia de las publicaciones recientes en el tema de las redes neuronales. En este nuevo artículo, retomaremos el uso de las redes neuronales.

Desarrollando un canal de Donchian personalizado con la ayuda de MQL5
Existen muchas herramientas técnicas que se pueden usar para visualizar los canales de precios. Una de esas herramientas es el canal de Donchian. En este artículo, aprenderemos cómo crear un canal de Donchian, y también a usarlo como indicador personalizado dentro de un asesor experto.

Obtenga una ventaja sobre cualquier mercado (Parte II): Predicción de indicadores técnicos
¿Sabía que podemos obtener más precisión pronosticando ciertos indicadores técnicos que prediciendo el precio subyacente de un símbolo negociado? Únase a nosotros para explorar cómo aprovechar esta información para mejorar las estrategias de negociación.


Otras clases en la biblioteca DoEasy (Parte 66): Clases de Colección de Señales MQL5.com
En este artículo, crearemos una clase de colección de señales del Servicio de señales de MQL5.com con funciones para gestionar las señales suscritas, y también modificaremos la clase del objeto de instantánea de la profundidad de mercado para mostrar el volumen total de la profundidad de mercado de compra y venta.

Múltiples indicadores en un gráfico (Parte 05): Convirtamos el MetaTrader 5 en un sistema RAD (I)
A pesar de no saber programar, muchas personas son bastante creativas y tienen grandes ideas, pero la falta de conocimientos o de entendimiento sobre la programación les impide hacer algunas cosas. Aprenda a crear un Chart Trade, pero utilizando la propia plataforma MT5, como si fuera un IDE.

Desarrollando un EA comercial desde cero (Parte 20): Un nuevo sistema de órdenes (III)
Continuemos con la implantación del nuevo sistema de órdenes. La creación de este sistema es algo que exige un buen dominio de MQL5, así como entender cómo funciona en realidad la plataforma MetaTrader 5 y qué recursos nos proporciona.

Redes neuronales: así de sencillo (Parte 21): Autocodificadores variacionales (VAE)
En el anterior artículo, vimos el algoritmo del autocodificador. Como cualquier otro algoritmo, tiene ventajas y desventajas. En la implementación original, el autocodificador se encarga de dividir los objetos de la muestra de entrenamiento tanto como sea posible. Y en este artículo, en cambio, hablaremos de cómo solucionar algunas de sus deficiencias.

Arbitraje estadístico con predicciones
Daremos un paseo por el arbitraje estadístico, buscaremos con Python símbolos de correlación y cointegración, haremos un indicador para el coeficiente de Pearson y haremos un EA para operar arbitraje estadístico con predicciones hechas con Python y modelos ONNX.

Aprendizaje automático y Data Science (Parte 8): Clusterización con el método de k-medias en MQL5
Para todos los que trabajan con datos, incluidos los tráders, la minería de datos puede descubrir posibilidades completamente nuevas, porque a menudo los datos no son tan simples como parecen. Resulta difícil para el ojo humano ver patrones y relaciones profundas en un conjunto de datos. Una solución sería el algoritmo de k-medias o k-means. Veamos si resulta útil.

Cómo construir un EA que opere automáticamente (Parte 05): Gatillos manuales (II)
Aprenda a crear un EA que opere automáticamente de forma sencilla y segura. Al final del artículo anterior, pensé que sería apropiado permitir el uso del EA de forma manual, al menos durante un tiempo.

Cómo integrar los conceptos de dinero inteligente (Smart Money Concepts, SMC) junto con el indicador RSI en un EA
Concepto de dinero inteligente (ruptura de estructura) junto con el indicador RSI para tomar decisiones comerciales automatizadas informadas basadas en la estructura del mercado.


Otras clases en la biblioteca DoEasy (Parte 72): Seguimiento y registro de parámetros de los objetos de gráfico en la colección
En el presente artículo, finalizaremos el trabajo con las clases de los objetos de gráfico y sus colecciones. Implementaremos el seguimiento automático del cambio de las propiedades de los gráficos y sus ventanas, y también el almacenamiento de los parámetros en las propiedades del objeto. Estas mejoras nos permitirán en el futuro crear una funcionalidad de eventos para la colección de gráficos al completo.

Redes neuronales: así de sencillo (Parte 16): Uso práctico de la clusterización
En el artículo anterior, creamos una clase para la clusterización de datos. En este artículo, queremos compartir con el lector diferentes opciones de uso de los resultados obtenidos para resolver problemas prácticos en el trading.


Otras clases en la biblioteca DoEasy (Parte 67): Clase de objeto de gráfico
En este artículo, crearemos una clase de objeto de gráfico (de un gráfico de un instrumento comercial) y modificaremos la clase de colección de objetos de señal mql5 para que cada objeto de señal guardado en la colección actualice también todos sus parámetros al actualizarse la lista.

Redes neuronales: así de sencillo (Parte 83): Algoritmo de convertidor espacio-temporal de atención constante (Conformer)
El algoritmo de Conformer que le mostraremos hoy se desarrolló para la previsión meteorológica, una esfera del saber que, por su constante variabilidad, puede compararse con los mercados financieros. El Conformer es un método completo que combina las ventajas de los modelos de atención y las ecuaciones diferenciales ordinarias.

Redes neuronales: así de sencillo (Parte 19): Reglas asociativas usando MQL5
Continuamos con el tema de la búsqueda de reglas asociativas. En el artículo anterior, vimos los aspectos teóricos de este tipo de problemas. En el presente artículo, mostraremos la implementación del método FP-Growth usando MQL5. Y también pondremos a prueba nuestra aplicación con datos reales.

Desarrollando la estrategia martingala Zone Recovery en MQL5
El artículo analiza, en una perspectiva detallada, los pasos que deben implementarse para la creación de un asesor experto basado en el algoritmo comercial Zone Recovery. Esto ayuda a automatizar el sistema ahorrando tiempo a los algotraders.