Artículos sobre programación y uso de robots comerciales en el lenguaje MQL5

icon

Los Asesores Expertos creados para la plataforma MetaTrader ejecutan una gran variedad de funciones ideadas por sus desarrolladores. Los robots comerciales son capaces de realizar el seguimiento de los instrumentos financieros 24 horas al día, copiar las operaciones, confeccionar y enviar los informes, analizar las noticias, e incluso facilitar al operador una interfaz gráfica personalizada desarrollada por encargo.

Los artículos contienen las técnicas de programación, ideas matemáticas para el procesamiento de datos, consejos para la creación y el encargo de robots comerciales.

Nuevo artículo
últimas | mejores
preview
Desarrollando un EA comercial desde cero (Parte 21): Un nuevo sistema de órdenes (IV)

Desarrollando un EA comercial desde cero (Parte 21): Un nuevo sistema de órdenes (IV)

Finalmente el sistema visual funcionará... aún no del todo. Aquí terminaremos de hacer los cambios básicos, y no serán pocos, serán muchos, y todos ellos necesarios, y todo el trabajo será bastante interesante.
preview
Mejore sus gráficos comerciales con una GUI interactiva basada en MQL5 (Parte I): Interfaz móvil (I)

Mejore sus gráficos comerciales con una GUI interactiva basada en MQL5 (Parte I): Interfaz móvil (I)

Libere el poder de la presentación dinámica de datos en sus estrategias o utilidades comerciales con nuestra guía detallada para desarrollar una GUI móvil en MQL5. Sumérjase en los eventos del gráfico y aprenda a diseñar e implementar una GUI simple y con capacidad de movimiento múltiple en un solo gráfico. El artículo también analizará la adición de elementos a una interfaz gráfica, aumentando su funcionalidad y atractivo estético.
preview
Creación de un modelo de restricción de tendencia de velas (Parte 8): Desarrollo de un asesor experto (II)

Creación de un modelo de restricción de tendencia de velas (Parte 8): Desarrollo de un asesor experto (II)

Piense en un asesor experto independiente. Anteriormente, analizamos un Asesor Experto basado en indicadores que también se asoció con un script independiente para dibujar la geometría de riesgo y recompensa. Hoy discutiremos la arquitectura de un Asesor Experto MQL5, que integra todas las características en un solo programa.
preview
Python, ONNX y MetaTrader 5: Creamos un modelo RandomForest con preprocesamiento de datos RobustScaler y PolynomialFeatures

Python, ONNX y MetaTrader 5: Creamos un modelo RandomForest con preprocesamiento de datos RobustScaler y PolynomialFeatures

En este artículo, crearemos un modelo de bosque aleatorio en Python, entrenaremos el modelo y lo guardaremos como un pipeline ONNX con preprocesamiento de datos. Además, usaremos el modelo en el terminal MetaTrader 5.
preview
Creación de un asesor experto MQL5 basado en la estrategia de ruptura del rango diario (Daily Range Breakout)

Creación de un asesor experto MQL5 basado en la estrategia de ruptura del rango diario (Daily Range Breakout)

En este artículo, creamos un Asesor Experto MQL5 basado en la estrategia de ruptura del rango diario (Daily Range Breakout). Cubrimos los conceptos clave de la estrategia, diseñamos el plano del EA e implementamos la lógica de ruptura en MQL5. Al final, exploramos técnicas para realizar pruebas retrospectivas y optimizar el EA con el fin de maximizar su eficacia.
preview
Aprendizaje automático y Data Science (Parte 26): La batalla definitiva en la previsión de series temporales: redes neuronales LSTM frente a GRU

Aprendizaje automático y Data Science (Parte 26): La batalla definitiva en la previsión de series temporales: redes neuronales LSTM frente a GRU

En el artículo anterior, hablamos de una RNN sencilla que, a pesar de su incapacidad para comprender las dependencias a largo plazo en los datos, fue capaz de realizar una estrategia rentable. En este artículo hablaremos tanto de la memoria a largo plazo (LSTM) como de la unidad recurrente controlada (GRU). Estas dos se introdujeron para superar las deficiencias de una RNN simple y ser más astuta que ella.
preview
Integración de Smart Money Concepts (SMC), Order Blocks (OB) y Fibonacci para entradas óptimas

Integración de Smart Money Concepts (SMC), Order Blocks (OB) y Fibonacci para entradas óptimas

Los bloques de órdenes (Order Blocks, OB) son áreas clave donde los operadores institucionales inician compras o ventas significativas. Después de un movimiento de precio significativo, Fibonacci ayuda a identificar un retroceso potencial desde un máximo reciente hasta un mínimo para identificar la entrada comercial óptima.
preview
Redes neuronales: así de sencillo (Parte 15): Clusterización de datos usando MQL5

Redes neuronales: así de sencillo (Parte 15): Clusterización de datos usando MQL5

Continuamos analizando el método de clusterización. En este artículo, crearemos una nueva clase CKmeans para implementar uno de los métodos de clusterización de k-medias más extendidos. Según los resultados de la prueba, el modelo ha podido identificar alrededor de 500 patrones.
preview
Redes neuronales: así de sencillo (Parte 73): AutoBots para predecir la evolución de los precios

Redes neuronales: así de sencillo (Parte 73): AutoBots para predecir la evolución de los precios

Seguimos hablando de algoritmos para entrenar modelos de predicción de trayectorias. En este artículo nos familiarizaremos con un método llamado "AutoBots".
preview
Desarrollamos un Asesor Experto multidivisas (Parte 4): Órdenes pendientes virtuales y guardado del estado

Desarrollamos un Asesor Experto multidivisas (Parte 4): Órdenes pendientes virtuales y guardado del estado

Tras empezar a desarrollar un EA multidivisa, ya hemos obtenido algunos resultados y hemos conseguido realizar varias iteraciones de mejora del código. Sin embargo, nuestro EA fue incapaz de trabajar con órdenes pendientes y reanudar la operación después del reinicio del terminal. Añadamos estas características.
preview
Cómo construir un EA que opere automáticamente (Parte 07): Tipos de cuentas (II)

Cómo construir un EA que opere automáticamente (Parte 07): Tipos de cuentas (II)

Aprenda a crear un EA que opere automáticamente de forma sencilla y segura. Uno siempre debe estar al tanto de lo que está haciendo un EA automatizado, y si se descarrila, eliminarlo lo más rápido posible del gráfico, para poner fin a lo que él estaba haciendo y evitar que las cosas se salgan de control.
preview
Añadimos un LLM personalizado a un robot comercial (Parte 2): Ejemplo de despliegue del entorno

Añadimos un LLM personalizado a un robot comercial (Parte 2): Ejemplo de despliegue del entorno

Los modelos lingüísticos (LLM) son una parte importante de la inteligencia artificial que evoluciona rápidamente, por lo que debemos plantearnos cómo integrar unos LLM potentes en nuestro comercio algorítmico. A la mayoría de la gente le resulta difícil adaptar estos modelos a sus necesidades, implantarlos de forma local y luego aplicarlos al trading algorítmico. En esta serie de artículos abordaremos un enfoque paso a paso para lograr este objetivo.
preview
Construya Asesores Expertos Auto-Optimizables con MQL5 y Python

Construya Asesores Expertos Auto-Optimizables con MQL5 y Python

En este artículo, vamos a discutir cómo podemos construir Asesores Expertos capaces de seleccionar de forma autónoma y cambiar las estrategias de negociación en función de las condiciones imperantes en el mercado. Aprenderemos sobre las cadenas de Markov y cómo pueden sernos útiles como operadores algorítmicos.
Otras clases en la biblioteca DoEasy (Parte 71): Eventos de la colección de objetos de gráfico
Otras clases en la biblioteca DoEasy (Parte 71): Eventos de la colección de objetos de gráfico

Otras clases en la biblioteca DoEasy (Parte 71): Eventos de la colección de objetos de gráfico

En el presente artículo, crearemos la funcionalidad necesaria para monitorear algunos eventos de los objetos del gráfico: añadir y eliminar gráficos de símbolos, añadir y eliminar subventanas en el gráfico, y también añadir/eliminar/cambiar indicadores en las ventanas del gráfico.
preview
Aprendizaje automático y Data Science (Parte 06). Redes neuronales (Parte 02): arquitectura de la redes neuronales con conexión directa

Aprendizaje automático y Data Science (Parte 06). Redes neuronales (Parte 02): arquitectura de la redes neuronales con conexión directa

En el artículo anterior, comenzamos a estudiar las redes neuronales con conexión directa, pero hay algunas cosas que quedaron sin resolver. Una de ellas es el diseño de la arquitectura. Por ello, en el presente artículo, veremos cómo diseñar una red neuronal flexible, teniendo en cuenta los datos de entrada, el número de capas ocultas y los nodos de cada red.
Implementando OLAP en la negociación (Parte 2): Visualización de los resultados del análisis interactivo de los datos multidimensionales
Implementando OLAP en la negociación (Parte 2): Visualización de los resultados del análisis interactivo de los datos multidimensionales

Implementando OLAP en la negociación (Parte 2): Visualización de los resultados del análisis interactivo de los datos multidimensionales

En este artículo, se consideran diversos aspectos del desarrollo de la interfaz gráfica interactiva de un programa MQL diseñado para el procesamiento analítico en línea (OLAP) del historial de la cuenta y de los informes comerciales. Para obtener un resultado visual, se usan las ventanas maximizadas y de escala, una disposición adaptable de los controles «de goma» y un nuevo control para mostrar diagramas. A base de eso, fue implementado GUI con una selección de indicadores a lo largo de los ejes de coordenadas, funciones agregadas, tipos de los gráficos y ordenaciones.
preview
Cómo construir un EA que opere automáticamente (Parte 10): Automatización (II)

Cómo construir un EA que opere automáticamente (Parte 10): Automatización (II)

La automatización no significa nada si no se puede controlar el horario. Ningún trabajador puede ser eficiente trabajando 24 horas al día. Sin embargo, muchos creen que un sistema automatizado debe trabajar 24 horas al día. Siempre es bueno tener formas de configurar una franja horaria para el Expert Advisor. En este artículo, vamos a discutir cómo agregar correctamente tal franja horaria.
preview
Redes neuronales: así de sencillo (Parte 17): Reducción de la dimensionalidad

Redes neuronales: así de sencillo (Parte 17): Reducción de la dimensionalidad

Seguimos analizando modelos de inteligencia artificial, y en particular, los algoritmos de aprendizaje no supervisado. Ya nos hemos encontrado con uno de los algoritmos de clusterización. Y en este artículo queremos compartir con ustedes una posible solución a los problemas de la reducción de la dimensionalidad.
preview
Desarrollo y prueba de los sistemas comerciales Aroon

Desarrollo y prueba de los sistemas comerciales Aroon

En este artículo, aprenderemos a construir un sistema comercial Aroon, aprendiendo asimilando los fundamentos de los indicadores y los pasos necesarios para crear un sistema comercial basado en el indicador Aroon. Una vez creado este sistema comercial, comprobaremos si puede ser rentable o necesita una mayor optimización.
preview
Desarrollo de un EA comercial desde cero (Parte 27): Rumbo al futuro (II)

Desarrollo de un EA comercial desde cero (Parte 27): Rumbo al futuro (II)

Sigamos avanzando hacia un sistema de órdenes más completo directamente en el gráfico. En este artículo les mostraré una forma de corregir o, más bien, de hacer que el sistema de órdenes sea más intuitivo.
Otras clases en la biblioteca DoEasy (Parte 69): Clases de colección de objetos de gráfico
Otras clases en la biblioteca DoEasy (Parte 69): Clases de colección de objetos de gráfico

Otras clases en la biblioteca DoEasy (Parte 69): Clases de colección de objetos de gráfico

A partir de este artículo, comenzaremos el desarrollo de una colección de clases de objetos de gráfico que almacenará una colección de lista de objetos de gráfico con sus subventanas y los indicadores en ellas, y nos permitirá trabajar con cualquier gráfico seleccionado y sus subventanas, o bien directamente con una lista de varios gráficos al mismo tiempo.
preview
Redes neuronales: así de sencillo (Parte 30): Algoritmos genéticos

Redes neuronales: así de sencillo (Parte 30): Algoritmos genéticos

En el artículo de hoy, hablaremos de un método de aprendizaje ligeramente distinto. Podríamos decir que lo hemos tomado de la teoría de la evolución de Darwin. Probablemente resulte menos controlable que los métodos anteriormente mencionados, pero también nos permite entrenar modelos indiferenciados.
preview
Redes neuronales en el trading: Modelo de doble atención para la previsión de tendencias

Redes neuronales en el trading: Modelo de doble atención para la previsión de tendencias

Continuamos la conversación sobre el uso de la representación lineal por partes de las series temporales iniciada en el artículo anterior. Y hoy hablaremos de la combinación de este método con otros enfoques del análisis de series temporales para mejorar la calidad de la previsión de la tendencia del movimiento de precios.
preview
Características del Wizard MQL5 que debe conocer (Parte 3): Entropía de Shannon

Características del Wizard MQL5 que debe conocer (Parte 3): Entropía de Shannon

El tráder moderno está casi siempre a la búsqueda de nuevas ideas, probando constantemente nuevas estrategias, modificándolas y descartando las que han fracasado. En esta serie de artículos, intentaré demostrar que el Wizard MQL5 es un verdadero apoyo para el tráder.
preview
Añadimos un LLM personalizado a un robot comercial (Parte 1): Desplegando el equipo y el entorno

Añadimos un LLM personalizado a un robot comercial (Parte 1): Desplegando el equipo y el entorno

Los modelos lingüísticos (LLM) son una parte importante de la inteligencia artificial que evoluciona rápidamente, por lo que debemos plantearnos cómo integrar unos LLM potentes en nuestro comercio algorítmico. A la mayoría de la gente le resulta difícil personalizar estos potentes modelos para adaptarlos a sus necesidades, implantarlos de forma local y luego aplicarlos al trading algorítmico. En esta serie de artículos abordaremos un enfoque paso a paso para lograr este objetivo.
preview
Análisis cuantitativo en MQL5: implementamos un algoritmo prometedor

Análisis cuantitativo en MQL5: implementamos un algoritmo prometedor

Hoy veremos qué es el análisis cuantitativo, cómo lo utilizan los grandes jugadores y crearemos uno de los algoritmos de análisis cuantitativo en MQL5.
preview
Cómo crear un diario de operaciones con MetaTrader y Google Sheets

Cómo crear un diario de operaciones con MetaTrader y Google Sheets

Crear un diario de operaciones con MetaTrader y Google Sheets! Aprenderá cómo sincronizar sus datos comerciales a través de HTTP POST y recuperarlos mediante solicitudes HTTP. Al final, tendrás un diario de operaciones que te ayudará a realizar un seguimiento de tus operaciones de manera eficaz y eficiente.
preview
Creamos un asesor multidivisa sencillo utilizando MQL5 (Parte 3): Prefijos/sufijos de símbolos y sesión comercial

Creamos un asesor multidivisa sencillo utilizando MQL5 (Parte 3): Prefijos/sufijos de símbolos y sesión comercial

Últimamente, he recibido comentarios de varios compañeros tráders sobre cómo usar el asesor multidivisa que estamos analizando con brókeres que utilizan prefijos y/o sufijos con nombres de símbolos, así como sobre la forma de implementar zonas horarias comerciales o sesiones comerciales en el asesor.
preview
Mejore sus gráficos comerciales con una GUI interactiva basada en MQL5 (Parte III): Interfaz comercial simple y móvil

Mejore sus gráficos comerciales con una GUI interactiva basada en MQL5 (Parte III): Interfaz comercial simple y móvil

En esta serie de artículos analizamos la integración de interfaces gráficas interactivas en paneles comerciales móviles en MQL5. En la tercera parte, utilizaremos los desarrollos de las partes anteriores para convertir paneles comerciales estáticos en dinámicos.
preview
Desarrollo de un EA comercial desde cero (Parte 29): Plataforma parlante

Desarrollo de un EA comercial desde cero (Parte 29): Plataforma parlante

En este artículo aprenderemos a hacer hablar a la plataforma MT5. ¿Qué tal si hacemos que el EA sea más divertido? Operar en los mercados financieros suele ser una actividad extremadamente aburrida y monótona, pero podemos hacerla un poco menos tediosa. Este proyecto podría ser peligroso en caso de que tengas un problema que te haga adicto, pero en realidad con las modificaciones todo el escenario podría ser más entretenido, menos aburrido.
preview
Desarrollo de un EA comercial desde cero (Parte 24): Dotando de robustez al sistema (I)

Desarrollo de un EA comercial desde cero (Parte 24): Dotando de robustez al sistema (I)

En este artículo haremos que el sistema sea más robusto, para que sea más estable y seguro de usar. Una forma de conseguir robustez es intentar reutilizar el código lo máximo posible, de esta forma él mismo será probado todo el tiempo y en diversas ocasiones. Pero esta es solo una de las formas, otra forma es el uso de la programación OOP.
preview
Redes neuronales: así de sencillo (Parte 46): Aprendizaje por refuerzo dirigido a objetivos (GCRL)

Redes neuronales: así de sencillo (Parte 46): Aprendizaje por refuerzo dirigido a objetivos (GCRL)

En el artículo de hoy, nos familiarizaremos con otra tendencia en el campo del aprendizaje por refuerzo. Se denomina aprendizaje por refuerzo dirigido a objetivos (Goal-conditioned reinforcement learning, GCRL). En este enfoque, el agente se entrenará para alcanzar diferentes objetivos en determinados escenarios.
preview
Redes neuronales: así de sencillo (Parte 57): Stochastic Marginal Actor-Critic (SMAC)

Redes neuronales: así de sencillo (Parte 57): Stochastic Marginal Actor-Critic (SMAC)

Hoy le proponemos introducir un algoritmo bastante nuevo, el Stochastic Marginal Actor-Critic (SMAC), que permite la construcción de políticas de variable latente dentro de un marco de maximización de la entropía.
preview
Características del Wizard MQL5 que debe conocer (Parte 5): Cadenas de Markov

Características del Wizard MQL5 que debe conocer (Parte 5): Cadenas de Markov

Las cadenas de Markov son una poderosa herramienta matemática que se puede usar para modelar y predecir los datos de las series temporales en varios campos, incluido el financiero. En el modelado y la previsión de series temporales financieras, las cadenas de Markov se usan a menudo para modelar la evolución de los activos financieros a lo largo del tiempo, como los precios de las acciones o los tipos de cambio. Una de las principales ventajas de los modelos de cadenas de Markov es su simplicidad y sencillez de uso.
preview
Estrategia de negociación de órdenes en cascada basada en cruces de EMA para MetaTrader 5

Estrategia de negociación de órdenes en cascada basada en cruces de EMA para MetaTrader 5

El artículo guía en la demostración de un algoritmo automatizado basado en cruces de EMA para MetaTrader 5. Información detallada sobre todos los aspectos de la demostración de un Asesor Experto en MQL5 y su prueba en MetaTrader 5, desde el análisis del comportamiento del rango de precios hasta la gestión de riesgos.
preview
Características del Wizard MQL5 que debe conocer (Parte 1): Análisis de regresión

Características del Wizard MQL5 que debe conocer (Parte 1): Análisis de regresión

De manera consciente o inconsciente, el tráder moderno está casi siempre en busca de nuevas ideas, probando constantemente nuevas estrategias, modificándolas y descartando las que han fracasado. Este proceso de investigación requiere mucho tiempo y se ve acompañado por muchos errores. En esta serie de artículos, intentaré demostrar que el Wizard MQL5 es un verdadero apoyo para el tráder. Gracias al Wizard, el tráder podrá ahorrar tiempo a la hora de poner en práctica sus ideas. Asimismo, podrá reducir la probabilidad de que surjan errores por duplicación de código. En lugar de perder el tiempo con el código, los tráders tendrán la posibilidad de poner en práctica su filosofía comercial.
preview
Redes neuronales: así de sencillo (Parte 59): Dicotomía de control (DoC)

Redes neuronales: así de sencillo (Parte 59): Dicotomía de control (DoC)

En el artículo anterior nos familiarizamos con el transformador de decisión. Sin embargo, el complejo entorno estocástico del mercado de divisas no nos permitió aprovechar plenamente el potencial del método presentado. Hoy veremos un algoritmo que tiene como objetivo mejorar el rendimiento de los algoritmos en entornos estocásticos.
preview
Redes neuronales: así de sencillo (Parte 88): Codificador de series temporales totalmente conectadas (TiDE)

Redes neuronales: así de sencillo (Parte 88): Codificador de series temporales totalmente conectadas (TiDE)

El deseo de obtener las previsiones más exactas impulsa a los investigadores a aumentar la complejidad de los modelos de previsión. Lo que a su vez conlleva un aumento de los costes de entrenamiento y mantenimiento del modelo. Pero, ¿está esto siempre justificado? En el presente artículo, me propongo presentarles un algoritmo que explota la sencillez y rapidez de los modelos lineales y muestra resultados a la altura de los mejores con arquitecturas más complejas.
preview
Desarrollamos un asesor experto multidivisa (Parte 14): Cambio de volumen adaptable en el gestor de riesgos

Desarrollamos un asesor experto multidivisa (Parte 14): Cambio de volumen adaptable en el gestor de riesgos

El gestor de riesgos que hemos desarrollado en los últimos artículos solo contiene funciones básicas. Hoy trataremos de analizar sus posibles formas de desarrollo, lo que nos permitirá aumentar los resultados comerciales sin interferir con la lógica de las estrategias de negociación.
preview
Desarrollamos un Asesor Experto multidivisas (Parte 2): Transición a posiciones virtuales de estrategias comerciales

Desarrollamos un Asesor Experto multidivisas (Parte 2): Transición a posiciones virtuales de estrategias comerciales

Hoy continuaremos con el desarrollo de un asesor multidivisa con varias estrategias funcionando en paralelo. Intentaremos transferir todo el trabajo relacionado con la apertura de posiciones de mercado desde el nivel de las estrategias al nivel de un experto que gestiona estas. Las propias estrategias solo negociarán virtualmente, sin abrir posiciones de mercado.