

Implementando OLAP en la negociación (Parte 2): Visualización de los resultados del análisis interactivo de los datos multidimensionales
En este artículo, se consideran diversos aspectos del desarrollo de la interfaz gráfica interactiva de un programa MQL diseñado para el procesamiento analítico en línea (OLAP) del historial de la cuenta y de los informes comerciales. Para obtener un resultado visual, se usan las ventanas maximizadas y de escala, una disposición adaptable de los controles «de goma» y un nuevo control para mostrar diagramas. A base de eso, fue implementado GUI con una selección de indicadores a lo largo de los ejes de coordenadas, funciones agregadas, tipos de los gráficos y ordenaciones.

Redes neuronales: así de sencillo (Parte 15): Clusterización de datos usando MQL5
Continuamos analizando el método de clusterización. En este artículo, crearemos una nueva clase CKmeans para implementar uno de los métodos de clusterización de k-medias más extendidos. Según los resultados de la prueba, el modelo ha podido identificar alrededor de 500 patrones.

Integración en MQL5: Python
Python es un lenguaje de programación conocido y popular con muchas características, especialmente en los campos de las finanzas, la ciencia de datos, la Inteligencia Artificial y el Aprendizaje Automático. Python es una herramienta poderosa que también puede resultar útil en el trading. MQL5 nos permite utilizar este poderoso lenguaje como una integración para lograr nuestros objetivos de manera efectiva. En este artículo, compartiremos cómo podemos usar Python como una integración en MQL5 después de aprender información básica sobre Python.

Python, ONNX y MetaTrader 5: Creamos un modelo RandomForest con preprocesamiento de datos RobustScaler y PolynomialFeatures
En este artículo, crearemos un modelo de bosque aleatorio en Python, entrenaremos el modelo y lo guardaremos como un pipeline ONNX con preprocesamiento de datos. Además, usaremos el modelo en el terminal MetaTrader 5.

Aprendizaje automático y Data Science (Parte 06). Redes neuronales (Parte 02): arquitectura de la redes neuronales con conexión directa
En el artículo anterior, comenzamos a estudiar las redes neuronales con conexión directa, pero hay algunas cosas que quedaron sin resolver. Una de ellas es el diseño de la arquitectura. Por ello, en el presente artículo, veremos cómo diseñar una red neuronal flexible, teniendo en cuenta los datos de entrada, el número de capas ocultas y los nodos de cada red.

Indicadores alternativos de riesgo y rentabilidad en MQL5
En este artículo, presentaremos una aplicación de varias medidas de rentabilidad y riesgo consideradas alternativas al ratio de Sharpe e investigaremos diferentes curvas de capital hipotéticas para analizar sus características.

Redes neuronales: así de sencillo (Parte 73): AutoBots para predecir la evolución de los precios
Seguimos hablando de algoritmos para entrenar modelos de predicción de trayectorias. En este artículo nos familiarizaremos con un método llamado "AutoBots".

Añadimos un LLM personalizado a un robot comercial (Parte 2): Ejemplo de despliegue del entorno
Los modelos lingüísticos (LLM) son una parte importante de la inteligencia artificial que evoluciona rápidamente, por lo que debemos plantearnos cómo integrar unos LLM potentes en nuestro comercio algorítmico. A la mayoría de la gente le resulta difícil adaptar estos modelos a sus necesidades, implantarlos de forma local y luego aplicarlos al trading algorítmico. En esta serie de artículos abordaremos un enfoque paso a paso para lograr este objetivo.

Redes neuronales: así de sencillo (Parte 17): Reducción de la dimensionalidad
Seguimos analizando modelos de inteligencia artificial, y en particular, los algoritmos de aprendizaje no supervisado. Ya nos hemos encontrado con uno de los algoritmos de clusterización. Y en este artículo queremos compartir con ustedes una posible solución a los problemas de la reducción de la dimensionalidad.

Cómo construir un EA que opere automáticamente (Parte 10): Automatización (II)
La automatización no significa nada si no se puede controlar el horario. Ningún trabajador puede ser eficiente trabajando 24 horas al día. Sin embargo, muchos creen que un sistema automatizado debe trabajar 24 horas al día. Siempre es bueno tener formas de configurar una franja horaria para el Expert Advisor. En este artículo, vamos a discutir cómo agregar correctamente tal franja horaria.


Otras clases en la biblioteca DoEasy (Parte 69): Clases de colección de objetos de gráfico
A partir de este artículo, comenzaremos el desarrollo de una colección de clases de objetos de gráfico que almacenará una colección de lista de objetos de gráfico con sus subventanas y los indicadores en ellas, y nos permitirá trabajar con cualquier gráfico seleccionado y sus subventanas, o bien directamente con una lista de varios gráficos al mismo tiempo.

Desarrollo de un EA comercial desde cero (Parte 27): Rumbo al futuro (II)
Sigamos avanzando hacia un sistema de órdenes más completo directamente en el gráfico. En este artículo les mostraré una forma de corregir o, más bien, de hacer que el sistema de órdenes sea más intuitivo.

Características del Wizard MQL5 que debe conocer (Parte 3): Entropía de Shannon
El tráder moderno está casi siempre a la búsqueda de nuevas ideas, probando constantemente nuevas estrategias, modificándolas y descartando las que han fracasado. En esta serie de artículos, intentaré demostrar que el Wizard MQL5 es un verdadero apoyo para el tráder.

La teoría del caos en el trading (Parte 1): Introducción, aplicación a los mercados financieros e indicador de Lyapunov
¿Puede aplicarse la teoría del caos a los mercados financieros? En este artículo analizaremos en qué se diferencian la teoría clásica del caos y los sistemas caóticos del concepto propuesto por Bill Williams.

Redes neuronales: así de sencillo (Parte 30): Algoritmos genéticos
En el artículo de hoy, hablaremos de un método de aprendizaje ligeramente distinto. Podríamos decir que lo hemos tomado de la teoría de la evolución de Darwin. Probablemente resulte menos controlable que los métodos anteriormente mencionados, pero también nos permite entrenar modelos indiferenciados.

Redes neuronales en el trading: Modelo de doble atención para la previsión de tendencias
Continuamos la conversación sobre el uso de la representación lineal por partes de las series temporales iniciada en el artículo anterior. Y hoy hablaremos de la combinación de este método con otros enfoques del análisis de series temporales para mejorar la calidad de la previsión de la tendencia del movimiento de precios.

Creación de un panel de indicadores de fuerza relativa (RSI) dinámico, multisímbolo y multiperíodo en MQL5
En este artículo, desarrollamos un panel dinámico de indicadores RSI multisímbolo y multiperiodo en MQL5, que proporciona a los operadores valores RSI en tiempo real a través de varios símbolos y marcos temporales. El panel cuenta con botones interactivos, actualizaciones en tiempo real e indicadores codificados por colores para ayudar a los operadores a tomar decisiones informadas.

Desarrollo y prueba de los sistemas comerciales Aroon
En este artículo, aprenderemos a construir un sistema comercial Aroon, aprendiendo asimilando los fundamentos de los indicadores y los pasos necesarios para crear un sistema comercial basado en el indicador Aroon. Una vez creado este sistema comercial, comprobaremos si puede ser rentable o necesita una mayor optimización.

Redes neuronales: así de sencillo (Parte 46): Aprendizaje por refuerzo dirigido a objetivos (GCRL)
En el artículo de hoy, nos familiarizaremos con otra tendencia en el campo del aprendizaje por refuerzo. Se denomina aprendizaje por refuerzo dirigido a objetivos (Goal-conditioned reinforcement learning, GCRL). En este enfoque, el agente se entrenará para alcanzar diferentes objetivos en determinados escenarios.

Desarrollo de un EA comercial desde cero (Parte 24): Dotando de robustez al sistema (I)
En este artículo haremos que el sistema sea más robusto, para que sea más estable y seguro de usar. Una forma de conseguir robustez es intentar reutilizar el código lo máximo posible, de esta forma él mismo será probado todo el tiempo y en diversas ocasiones. Pero esta es solo una de las formas, otra forma es el uso de la programación OOP.

Cómo usar la API de datos JSON en sus proyectos MQL
Imagina que puedes utilizar datos que no se encuentran en MetaTrader, solo obtienes datos de los indicadores mediante análisis de precios y análisis técnico. Ahora imagina que puedes acceder a datos que aumentarán tu poder comercial. Puede multiplicar la potencia del software MetaTrader si combina la salida de otro software, métodos de análisis macro y herramientas ultra avanzadas a través de los datos de la API. En este artículo, le enseñaremos cómo utilizar las API y le presentaremos servicios de datos API útiles y valiosos.

Desarrollo de un EA comercial desde cero (Parte 29): Plataforma parlante
En este artículo aprenderemos a hacer hablar a la plataforma MT5. ¿Qué tal si hacemos que el EA sea más divertido? Operar en los mercados financieros suele ser una actividad extremadamente aburrida y monótona, pero podemos hacerla un poco menos tediosa. Este proyecto podría ser peligroso en caso de que tengas un problema que te haga adicto, pero en realidad con las modificaciones todo el escenario podría ser más entretenido, menos aburrido.

Construya Asesores Expertos Auto-Optimizables con MQL5 y Python
En este artículo, vamos a discutir cómo podemos construir Asesores Expertos capaces de seleccionar de forma autónoma y cambiar las estrategias de negociación en función de las condiciones imperantes en el mercado. Aprenderemos sobre las cadenas de Markov y cómo pueden sernos útiles como operadores algorítmicos.

Creación de un asesor experto MQL5 basado en la estrategia de ruptura del rango diario (Daily Range Breakout)
En este artículo, creamos un Asesor Experto MQL5 basado en la estrategia de ruptura del rango diario (Daily Range Breakout). Cubrimos los conceptos clave de la estrategia, diseñamos el plano del EA e implementamos la lógica de ruptura en MQL5. Al final, exploramos técnicas para realizar pruebas retrospectivas y optimizar el EA con el fin de maximizar su eficacia.

Creamos un asesor multidivisa sencillo utilizando MQL5 (Parte 3): Prefijos/sufijos de símbolos y sesión comercial
Últimamente, he recibido comentarios de varios compañeros tráders sobre cómo usar el asesor multidivisa que estamos analizando con brókeres que utilizan prefijos y/o sufijos con nombres de símbolos, así como sobre la forma de implementar zonas horarias comerciales o sesiones comerciales en el asesor.

Características del Wizard MQL5 que debe conocer (Parte 1): Análisis de regresión
De manera consciente o inconsciente, el tráder moderno está casi siempre en busca de nuevas ideas, probando constantemente nuevas estrategias, modificándolas y descartando las que han fracasado. Este proceso de investigación requiere mucho tiempo y se ve acompañado por muchos errores. En esta serie de artículos, intentaré demostrar que el Wizard MQL5 es un verdadero apoyo para el tráder. Gracias al Wizard, el tráder podrá ahorrar tiempo a la hora de poner en práctica sus ideas. Asimismo, podrá reducir la probabilidad de que surjan errores por duplicación de código. En lugar de perder el tiempo con el código, los tráders tendrán la posibilidad de poner en práctica su filosofía comercial.

Mejore sus gráficos comerciales con una GUI interactiva basada en MQL5 (Parte III): Interfaz comercial simple y móvil
En esta serie de artículos analizamos la integración de interfaces gráficas interactivas en paneles comerciales móviles en MQL5. En la tercera parte, utilizaremos los desarrollos de las partes anteriores para convertir paneles comerciales estáticos en dinámicos.

Redes neuronales: así de sencillo (Parte 88): Codificador de series temporales totalmente conectadas (TiDE)
El deseo de obtener las previsiones más exactas impulsa a los investigadores a aumentar la complejidad de los modelos de previsión. Lo que a su vez conlleva un aumento de los costes de entrenamiento y mantenimiento del modelo. Pero, ¿está esto siempre justificado? En el presente artículo, me propongo presentarles un algoritmo que explota la sencillez y rapidez de los modelos lineales y muestra resultados a la altura de los mejores con arquitecturas más complejas.

Redes neuronales en el trading: Transformador contrastivo de patrones
El transformador contrastivo de patrones analiza la situación del mercado tanto a nivel de velas individuales como de patrones completos, lo cual contribuye a mejorar la calidad de modelado de las tendencias del mercado, mientras que el uso del aprendizaje por contraste para emparejar las representaciones de velas y patrones conduce a la autorregulación y a la mejora de la precisión de la predicción.

Análisis cuantitativo en MQL5: implementamos un algoritmo prometedor
Hoy veremos qué es el análisis cuantitativo, cómo lo utilizan los grandes jugadores y crearemos uno de los algoritmos de análisis cuantitativo en MQL5.

Desarrollando un EA comercial desde cero (Parte 19): Un nuevo sistema de órdenes (II)
Aquí vamos a desarrollar un sistema gráfico de órdenes, del tipo «vea lo que está pasando». Cabe decir que no partiremos de cero, sino que modificaremos el sistema existente añadiendo aún más objetos y eventos al gráfico del activo que estamos negociando.

Redes neuronales: así de sencillo (Parte 48): Métodos para reducir la sobreestimación de los valores de la función Q
En el artículo anterior, presentamos el método DDPG, que nos permite entrenar modelos en un espacio de acción continuo. Sin embargo, al igual que otros métodos de aprendizaje Q, el DDPG tiende a sobreestimar los valores de la función Q. Con frecuencia, este problema provoca que entrenemos los agentes con una estrategia subóptima. En el presente artículo, analizaremos algunos enfoques para superar el problema mencionado.

Añadimos un LLM personalizado a un robot comercial (Parte 1): Desplegando el equipo y el entorno
Los modelos lingüísticos (LLM) son una parte importante de la inteligencia artificial que evoluciona rápidamente, por lo que debemos plantearnos cómo integrar unos LLM potentes en nuestro comercio algorítmico. A la mayoría de la gente le resulta difícil personalizar estos potentes modelos para adaptarlos a sus necesidades, implantarlos de forma local y luego aplicarlos al trading algorítmico. En esta serie de artículos abordaremos un enfoque paso a paso para lograr este objetivo.

Desarrollamos un asesor experto multidivisa (Parte 14): Cambio de volumen adaptable en el gestor de riesgos
El gestor de riesgos que hemos desarrollado en los últimos artículos solo contiene funciones básicas. Hoy trataremos de analizar sus posibles formas de desarrollo, lo que nos permitirá aumentar los resultados comerciales sin interferir con la lógica de las estrategias de negociación.

Desarrollando un EA comercial desde cero (Parte 17): Acceso a los datos en la web (III)
En este artículo continuaremos a aprender cómo obtener datos de la web para utilizarlos en un EA. Así que pongamos manos a la obra, o más bien a empezar a codificar un sistema alternativo.

Redes neuronales: así de sencillo (Parte 47): Espacio continuo de acciones
En este artículo ampliamos el abanico de tareas de nuestro agente. El proceso de entrenamiento incluirá algunos aspectos de la gestión de capital y del riesgo que forma parte integral de cualquier estrategia comercial.

Indicadores múltiplos em um gráfico (Parte 04): Iniciando pelo EA
En artículos anteriores, expliqué cómo crear un indicador con múltiples subventanas, lo que se vuelve interesante cuando usamos un indicador personalizado. Aquí entenderemos cómo añadir múltiples ventanas en un EA.

Preparación de indicadores de símbolo/periodo múltiple
En este artículo analizaremos los principios de la creación de los indicadores de símbolo/periodo múltiple y la obtención de datos de ellos en asesores e indicadores. Asimismo, veremos los principales matices de uso de los indicadores múltiples en asesores e indicadores, y su representación a través de los búferes del indicador personalizado.


Vídeo: Comercio automatizado simple: cómo crear un asesor comercial sencillo usando MQL5
La mayoría de los estudiantes de mis cursos consideraban que el lenguaje MQL5 era difícil de entender. Asimismo, buscaban formas sencillas de automatizar algunos procesos. En este artículo, el lector aprenderá cómo comenzar a trabajar directamente en MQL5 incluso sin conocimientos de programación y habiendo tenido incluso intentos fallidos de dominar este tema en el pasado.

Desarrollamos un Asesor Experto multidivisas (Parte 2): Transición a posiciones virtuales de estrategias comerciales
Hoy continuaremos con el desarrollo de un asesor multidivisa con varias estrategias funcionando en paralelo. Intentaremos transferir todo el trabajo relacionado con la apertura de posiciones de mercado desde el nivel de las estrategias al nivel de un experto que gestiona estas. Las propias estrategias solo negociarán virtualmente, sin abrir posiciones de mercado.