
Practicando el desarrollo de estrategias de trading
En este artículo, intentaremos desarrollar nuestra propia estrategia de trading. Toda estrategia de trading debe basarse en algún tipo de ventaja estadística. Además, esta ventaja debería existir durante mucho tiempo.

Redes neuronales: así de sencillo (Parte 84): Normalización reversible (RevIN)
Hace tiempo que sabemos que el preprocesamiento de los datos de origen desempeña un papel fundamental en la estabilidad del entrenamiento de los modelos. Y para el procesamiento en línea de datos de origen "brutos" solemos utilizar una capa de normalización por lotes. Pero a veces tenemos que invertir el procedimiento. En este artículo analizaremos un posible enfoque para resolver este tipo de problemas.

Teoría de categorías en MQL5 (Parte 8): Monoides
El presente artículo continúa la serie sobre la implementación de la teoría de categorías en MQL5. Aquí presentamos los monoides como un dominio (conjunto) que distingue la teoría de categorías de otros métodos de clasificación de datos al incluir reglas y un elemento de identidad.

Metamodelos en el aprendizaje automático y el trading: Timing original de las órdenes comerciales
Metamodelos en el aprendizaje automático: Creación automática de sistemas comerciales sin apenas intervención humana: el Modelo decide por sí mismo cómo y cuándo comerciar.


Gráficos en la biblioteca DoEasy (Parte 76): Objeto de formulario y temas de color predeterminados
En este artículo, describiremos la construcción de diferentes temas de diseño de la GUI en la biblioteca. Asimismo, crearemos el objeto "formulario", que es sucesor del objeto de clase del elemento gráfico, y también prepararemos los datos para crear las sombras de los objetos gráficos de la biblioteca y desarrollar posteriormente la funcionalidad.

Optimización automatizada de parámetros para estrategias de negociación con Python y MQL5
Existen varios tipos de algoritmos para la autooptimización de estrategias y parámetros de negociación. Estos algoritmos se utilizan para mejorar automáticamente las estrategias de negociación basándose en datos históricos y actuales del mercado. En este artículo veremos uno de ellos con ejemplos en Python y MQL5.

Redes neuronales: así de sencillo (Parte 33): Regresión cuantílica en el aprendizaje Q distribuido
Continuamos explorando el aprendizaje Q distribuido. Hoy analizaremos este enfoque desde un ángulo diferente. Vamos a hablar de la posibilidad de utilizar la regresión cuantílica para resolver el problema de la previsión de los movimientos de precio.

Todo lo que necesita saber sobre la estructura de un programa MQL5
Cualquier programa en cualquier lenguaje de programación tiene una estructura determinada. En este artículo, aprenderá los componentes principales de la estructura de un programa en MQL5, que pueden resultarle muy útiles a la hora de crear un sistema comercial o una herramienta comercial para MetaTrader 5.

Introducción a MQL5 (Parte 8): Guía del trading algorítmico para principiantes (II)
Este artículo aborda preguntas comunes de principiantes en los foros de MQL5 y demuestra soluciones prácticas. Aprenda a realizar tareas esenciales como comprar y vender, obtener precios de velas y administrar aspectos del trading automatizado como límites de trading, períodos de trading y umbrales de ganancias/pérdidas. Obtenga orientación paso a paso para mejorar su comprensión e implementación de estos conceptos en MQL5.

Experimentos con redes neuronales (Parte 6): El perceptrón como herramienta autosuficiente de predicción de precios
Ejemplo de utilización de un perceptrón como herramienta autónoma de predicción de precios. En el artículo exploraremos los conceptos generales y veremos un sencillo asesor experto ya preparado, así como los resultados de su optimización.

Desarrollando un EA comercial desde cero (Parte 09): Un salto conceptual (II)
Colocación del Chart Trade en una ventana flotante. En el artículo anterior creamos el sistema base para utilizar templates dentro de una ventana flotante.

Cómo crear un panel interactivo MQL5 utilizando la clase Controls (Parte 1): Configuración del panel
En este artículo, creamos un panel de control interactivo para operaciones bursátiles utilizando la clase Controls en MQL5, diseñada para optimizar las operaciones bursátiles. El panel incluye un título, botones de navegación para Operar, Cerrar e Información, y botones de acción especializados para ejecutar operaciones y gestionar posiciones. Al final del artículo, tendrás un panel base listo para futuras mejoras en futuras entregas.

Creamos un asesor multidivisa sencillo utilizando MQL5 (Parte 2): Señales del indicador - Parabolic SAR de marco temporal múltiple
En este artículo, entenderemos por asesor multidivisa un asesor o robot comercial que puede comerciar (abrir/cerrar órdenes, gestionar órdenes, por ejemplo, trailing-stop y trailing-profit, etc.) con más de un par de símbolos de un gráfico. Esta vez usaremos solo un indicador, a saber, Parabolic SAR o iSAR en varios marcos temporales, comenzando desde PERIOD_M15 y terminando con PERIOD_D1.

Desarrollo de un EA comercial desde cero (Parte 26): Rumbo al futuro (I)
Llevaremos nuestro sistema de órdenes al siguiente nivel, pero primero tenemos que resolver algunas cosas. Y es que ahora tenemos cuestiones que dependen de cómo queremos operar y de qué tipo de cosas hacemos durante la jornada de tráding.

Redes neuronales: así de sencillo (Parte 34): Función cuantílica totalmente parametrizada
Seguimos analizando algoritmos de aprendizaje Q distribuidos. En artículos anteriores hemos analizado los algoritmos de aprendizaje Q distribuido y cuantílico. En el primero, enseñamos las probabilidades de los rangos de valores dados. En el segundo, enseñamos los rangos con una probabilidad determinada. Tanto en el primer algoritmo como en el segundo, usamos el conocimiento a priori de una distribución y enseñamos la otra. En el presente artículo, veremos un algoritmo que permite al modelo aprender ambas distribuciones.

Cómo construir un EA que opere automáticamente (Parte 13): Automatización (V)
¿Sabes lo que es un diagrama de flujo? ¿Sabes cómo utilizarlo? ¿Cree que los diagramas de flujo son sólo cosas de aprendiz de programador? Pues echa un vistazo a este artículo y aprende a trabajar con diagramas de flujo.

Aprendiendo a diseñar un sistema de trading con Bears Power Index
Bienvenidos a un nuevo artículo de la serie dedicada a la creación de sistemas comerciales basados en indicadores técnicos populares. En esta ocasión, hablaremos sobre el Bears Power Index y crearemos un sistema comercial basado en sus indicadores.

Formulación de un Asesor Experto Multipar Dinámico (Parte 1): Correlación de divisas y correlación inversa
El asesor experto dinámico de múltiples pares aprovecha las estrategias de correlación y correlación inversa para optimizar el rendimiento comercial. Al analizar datos del mercado en tiempo real, identifica y explota la relación entre pares de divisas.

Creación de un asesor experto integrado de MQL5 y Telegram (Parte 2): Envío de señales de MQL5 a Telegram
En este artículo, creamos un Asesor Experto integrado con MQL5 y Telegram que envía señales de cruce de medias móviles a Telegram. Detallamos el proceso de generación de señales de trading a partir de cruces de medias móviles, implementando el código necesario en MQL5, y asegurando que la integración funciona a la perfección. El resultado es un sistema que proporciona alertas comerciales en tiempo real directamente a su chat grupal de Telegram.

Creamos un asesor multidivisa sencillo utilizando MQL5 (Parte 1): Señales basadas en ADX combinadas con Parabolic SAR
En este artículo, entenderemos por asesor multidivisa un asesor o robot comercial que puede comerciar (abrir/cerrar órdenes, gestionar órdenes, etc.) con más de un par de símbolos de un gráfico.

Trading bursátil con cuadrícula usando un asesor con órdenes stop pendientes en la Bolsa de Moscú (MOEX)
Hoy utilizaremos un enfoque comercial de cuadrícula con órdenes stop pendientes en un asesor experto en el lenguaje de estrategias comerciales MQL5 para MetaTrader 5 en la Bolsa de Moscú (MOEX). Al comerciar en el mercado, una de las estrategias más simples consiste en colocar una cuadrícula de órdenes diseñada para "atrapar" el precio del mercado.

Redes neuronales: así de sencillo (Parte 18): Reglas asociativas
Como continuación de esta serie, hoy presentamos otro tipo de tarea relacionada con los métodos de aprendizaje no supervisado: la búsqueda de reglas asociativas. Este tipo de tarea se usó por primera vez en el comercio minorista para analizar las cestas de la compra. En este artículo, hablaremos de las posibilidades que ofrece el uso de dichos algoritmos en el trading.

Programación orientada a objetos (OOP) en MQL5
Como desarrolladores, debemos aprender a crear y desarrollar software que sea reutilizable y flexible sin duplicar código, especialmente si tenemos diferentes objetos con comportamientos distintos. Esto se puede lograr fácilmente utilizando las técnicas y principios de la programación orientada a objetos. En este artículo le presentamos los conceptos básicos de la programación orientada a objetos en MQL5.

Introducción a MQL5 (Parte 4): Estructuras, clases y funciones de tiempo
En esta serie, seguiremos desvelando los secretos de la programación. En nuestro nuevo artículo, aprenderemos los fundamentos de las estructuras, las clases y las funciones de tiempo y adquiriremos nuevas habilidades para lograr una programación eficiente. Esta guía será probablemente útil no solo para los principiantes, sino también para los desarrolladores experimentados, ya que simplifica conceptos complejos, ofreciendo información valiosa para dominar MQL5. Así que hoy podrá seguir aprendiendo cosas nuevas, mejorando sus conocimientos de programación y dominando el mundo del trading algorítmico.

Experimentos con redes neuronales (Parte 3): Uso práctico
Las redes neuronales lo son todo. Vamos a comprobar en la práctica si esto es así. MetaTrader 5 como herramienta autosuficiente para el uso de redes neuronales en el trading. Una explicación sencilla.

Cómo construir un EA que opere automáticamente (Parte 11): Automatización (III)
Un sistema automatizado sin seguridad no tendrá éxito. Sin embargo, la seguridad no se consigue sin entender bien algunas cosas. En este artículo, comprenderemos por qué es tan difícil lograr la máxima seguridad en los sistemas automatizados.

Redes neuronales: así de sencillo (Parte 85): Predicción multidimensional de series temporales
En este artículo presentaremos un nuevo método complejo de previsión de series temporales que combina armoniosamente las ventajas de los modelos lineales y los transformadores.

Mejore sus gráficos comerciales con una GUI interactiva basada en MQL5 (Parte I): Interfaz móvil (I)
Libere el poder de la presentación dinámica de datos en sus estrategias o utilidades comerciales con nuestra guía detallada para desarrollar una GUI móvil en MQL5. Sumérjase en los eventos del gráfico y aprenda a diseñar e implementar una GUI simple y con capacidad de movimiento múltiple en un solo gráfico. El artículo también analizará la adición de elementos a una interfaz gráfica, aumentando su funcionalidad y atractivo estético.

Desarrollando un EA comercial desde cero (Parte 21): Un nuevo sistema de órdenes (IV)
Finalmente el sistema visual funcionará... aún no del todo. Aquí terminaremos de hacer los cambios básicos, y no serán pocos, serán muchos, y todos ellos necesarios, y todo el trabajo será bastante interesante.

Aprendiendo a diseñar un sistema comercial con Gator Oscillator
Bienvenidos a un nuevo artículo de la serie dedicada a la creación de sistemas comerciales basados en indicadores técnicos populares. En esta ocasión, hablaremos sobre el indicador Gator Oscillator y crearemos un sistema comercial utilizando estrategias simples.

Introducción a MQL5 (Parte 3): Estudiamos los elementos básicos de MQL5
En este artículo, seguiremos estudiando los fundamentos de la programación MQL5. Hoy veremos los arrays, las funciones definidas por el usuario, los preprocesadores y el procesamiento de eventos. Para una mayor claridad, todos los pasos de cada explicación irán acompañado de un código. Esta serie de artículos sienta las bases para el aprendizaje de MQL5, prestando especial atención a la explicación de cada línea de código.

Redes neuronales: así de sencillo (Parte 35): Módulo de curiosidad intrínseca (Intrinsic Curiosity Module)
Seguimos analizando los algoritmos de aprendizaje por refuerzo. Todos los algoritmos que hemos estudiado hasta ahora requerían la creación de una política de recompensas tal que el agente pudiera evaluar cada una de sus acciones en cada transición de un estado del sistema a otro, pero este enfoque resulta bastante artificial. En la práctica, existe cierto tiempo de retraso entre la acción y la recompensa. En este artículo, le sugerimos que se familiarice con un algoritmo de entrenamiento de modelos que puede funcionar con varios retrasos de tiempo desde la acción hasta la recompensa.

Comprobando la informatividad de distintos tipos de medias móviles
Todos conocemos la importancia de la media móvil para muchos tráders. Existen diferentes tipos de medias móviles que pueden resultar útiles en el trading. Vamos a echarles un vistazo y a hacer una sencilla comparación para ver cuál puede dar mejores resultados.

Aprendizaje automático y Data Science (Parte 14): Aplicación de los mapas de Kohonen a los mercados
¿Quiere encontrar un nuevo enfoque comercial que lo ayude a orientarse en mercados complejos y en cambio constante? Eche un vistazo a los mapas de Kohonen, una forma innovadora de redes neuronales artificiales que puede ayudarle a descubrir patrones y tendencias ocultos en los datos del mercado. En este artículo, veremos cómo funcionan los mapas de Kohonen y cómo usarlos para desarrollar estrategias comerciales efectivas. Creo que este nuevo enfoque resultará de interés tanto a los tráders experimentados como para los principiantes.

Creación de un Asesor Experto MQL5 basado en la estrategia PIRANHA utilizando las Bandas de Bollinger
En este artículo, creamos un Asesor Experto (Expert Advisor, EA) en MQL5 basado en la estrategia PIRANHA, utilizando Bandas de Bollinger para mejorar la efectividad comercial. Discutimos los principios clave de la estrategia, la implementación de la codificación y los métodos de prueba y optimización. Este conocimiento le permitirá implementar el EA en sus escenarios comerciales de manera efectiva.

De principiante a experto: El viaje esencial a través del trading con MQL5
¡Libera tu potencial! Estás rodeado de oportunidades. Descubra 3 secretos principales para iniciar su viaje hacia MQL5 o llevarlo al siguiente nivel. Vamos a hablar de consejos y trucos tanto para principiantes como para profesionales.

Cómo construir un EA que opere automáticamente (Parte 07): Tipos de cuentas (II)
Aprenda a crear un EA que opere automáticamente de forma sencilla y segura. Uno siempre debe estar al tanto de lo que está haciendo un EA automatizado, y si se descarrila, eliminarlo lo más rápido posible del gráfico, para poner fin a lo que él estaba haciendo y evitar que las cosas se salgan de control.


Otras clases en la biblioteca DoEasy (Parte 71): Eventos de la colección de objetos de gráfico
En el presente artículo, crearemos la funcionalidad necesaria para monitorear algunos eventos de los objetos del gráfico: añadir y eliminar gráficos de símbolos, añadir y eliminar subventanas en el gráfico, y también añadir/eliminar/cambiar indicadores en las ventanas del gráfico.

Desarrollamos un Asesor Experto multidivisas (Parte 4): Órdenes pendientes virtuales y guardado del estado
Tras empezar a desarrollar un EA multidivisa, ya hemos obtenido algunos resultados y hemos conseguido realizar varias iteraciones de mejora del código. Sin embargo, nuestro EA fue incapaz de trabajar con órdenes pendientes y reanudar la operación después del reinicio del terminal. Añadamos estas características.

Creación de un modelo de restricción de tendencia de velas (Parte 8): Desarrollo de un asesor experto (II)
Piense en un asesor experto independiente. Anteriormente, analizamos un Asesor Experto basado en indicadores que también se asoció con un script independiente para dibujar la geometría de riesgo y recompensa. Hoy discutiremos la arquitectura de un Asesor Experto MQL5, que integra todas las características en un solo programa.