Entwicklung eines Expertenberaters für mehrere Währungen (Teil 18): Automatisierte Gruppenauswahl unter Berücksichtigung der Vorwärtszeitraum
Fahren wir fort, die Schritte zu automatisieren, die wir zuvor manuell durchgeführt haben. Diesmal kehren wir zur Automatisierung der zweiten Phase zurück, d. h. zur Auswahl der optimalen Gruppe von Einzelinstanzen von Handelsstrategien, und ergänzen sie durch die Möglichkeit, die Ergebnisse der Instanzen in dem Vorwärtszeitraum zu berücksichtigen.
Selbstoptimierende Expert Advisors in MQL5 (Teil 10): Matrix-Faktorisierung
Die Faktorisierung ist ein mathematischer Prozess, der dazu dient, Erkenntnisse über die Eigenschaften von Daten zu gewinnen. Wenn wir die Faktorisierung auf große Mengen von Marktdaten anwenden – die in Zeilen und Spalten organisiert sind – können wir Muster und Merkmale des Marktes aufdecken. Die Faktorisierung ist ein mächtiges Werkzeug, und dieser Artikel zeigt Ihnen, wie Sie es im MetaTrader 5-Terminal über die MQL5-API nutzen können, um tiefere Einblicke in Ihre Marktdaten zu gewinnen.
Automatisieren von Handelsstrategien in MQL5 (Teil 27): Erstellen eines Price Action Harmonic Pattern der Krabbe mit visuellem Feedback
In diesem Artikel entwickeln wir ein Crab Harmonic Pattern System in MQL5, das harmonische Auf- und Abwärtsmuster der Krabbe oder „crab“ mit Hilfe von Umkehrpunkten und Fibonacci-Verhältnisse identifiziert und Handelsgeschäfte mit präzisen Einstiegs-, Stop-Loss- und Take-Profit-Levels auslöst. Wir integrieren visuelles Feedback durch Chart-Objekte wie Dreiecke und Trendlinien, um die Struktur des XABCD-Musters und die Handelsniveaus anzuzeigen.
Entwicklung eines Replay-Systems (Teil 59): Eine neue Zukunft
Wenn wir die unterschiedlichen Ideen richtig verstehen, können wir mit weniger Aufwand mehr erreichen. In diesem Artikel sehen wir uns an, warum es notwendig ist, eine Vorlage zu konfigurieren, bevor der Dienst mit dem Chart interagieren kann. Und was wäre, wenn wir den Mauszeiger verbessern würden, damit wir mehr damit machen können?
Volumetrische neuronale Netzwerkanalyse als Schlüssel zu zukünftigen Trends
Der Artikel untersucht die Möglichkeit, die Preisprognose auf der Grundlage der Analyse des Handelsvolumens zu verbessern, indem die Prinzipien der technischen Analyse mit der Architektur des neuronalen Netzes LSTM integriert werden. Besonderes Augenmerk wird auf die Erkennung und Interpretation anomaler Volumina, die Verwendung von Clustern und die Erstellung von Merkmalen auf der Grundlage von Volumina und deren Definition im Rahmen des maschinellen Lernens gelegt.
Artificial Showering Algorithm (ASHA)
Der Artikel stellt den Künstlichen Duschalgorithmus (ASHA) vor, eine neue metaheuristische Methode, die für die Lösung allgemeiner Optimierungsprobleme entwickelt wurde. Auf der Grundlage der Simulation von Wasserfluss- und Akkumulationsprozessen konstruiert dieser Algorithmus das Konzept eines idealen Feldes, in dem jede Einheit der Ressource (Wasser) aufgerufen ist, eine optimale Lösung zu finden. Wir werden herausfinden, wie ASHA Fließ- und Akkumulationsprinzipien anpasst, um Ressourcen in einem Suchraum effizient zuzuweisen, und seine Implementierung und Testergebnisse sehen.
Handel mit dem MQL5 Wirtschaftskalender (Teil 5): Verbessern des Dashboards mit reaktionsschnellen Steuerelementen und Filterschaltflächen
In diesem Artikel erstellen wir Schaltflächen für die Filter von Währungspaar, Wichtigkeitsstufen, Zeitspannen und eine Abbruchoption, um die Kontrolle über das Dashboard zu verbessern. Diese Tasten sind so programmiert, dass sie dynamisch auf Nutzeraktionen reagieren und eine nahtlose Interaktion ermöglichen. Außerdem automatisieren wir ihr Verhalten, um Änderungen in Echtzeit auf dem Dashboard anzuzeigen. Dies verbessert die allgemeine Funktionsweise, Mobilität und Reaktionsfähigkeit des Panels.
Erstellen von dynamischen MQL5-Grafikschnittstellen durch ressourcengesteuerte Bildskalierung mit bikubischer Interpolation auf Handelscharts
In diesem Artikel erforschen wir dynamische MQL5-Grafikschnittstellen, die bikubische Interpolation für hochwertige Bildskalierung auf Handelscharts verwenden. Wir stellen flexible Positionierungsoptionen vor, die eine dynamische Zentrierung oder Eckverankerung mit nutzerdefinierten Versätzen ermöglichen.
MQL5-Assistenz-Techniken, die Sie kennen sollten (Teil 75): Verwendung des Awesome Oszillators und des Envelopes
Der Awesome Oscillator von Bill Williams und der Envelopes-Kanal sind ein Paar, das komplementär in einem MQL5 Expert Advisor verwendet werden kann. Wir verwenden den Awesome Oscillator wegen seiner Fähigkeit, Trends zu erkennen, während der Envelope-Kanal zur Definition unserer Unterstützungs-/Widerstandsniveaus herangezogen wird. Bei der Erkundung dieser Indikatorpaarung verwenden wir den MQL5-Assistenten, um das Potenzial dieser beiden Indikatoren zu ermitteln und zu testen.
Neuronale Netze im Handel: Optimierung des Transformers für Zeitreihenprognosen (LSEAttention)
Der LSEAttention-Rahmen bietet Verbesserungen der Transformer-Architektur. Es wurde speziell für langfristige multivariate Zeitreihenprognosen entwickelt. Die von den Autoren der Methode vorgeschlagenen Ansätze können angewandt werden, um Probleme des Entropiekollapses und der Lerninstabilität zu lösen, die bei einem einfachen Transformer häufig auftreten.
Entwicklung eines Toolkit zur Analyse von Preisaktionen (Teil 16): Einführung in die Quarters Theory (II) - Intrusion Detector EA
In unserem letzten Artikel haben wir ein einfaches Skript namens „Quarters Drawer“ vorgestellt. Auf dieser Grundlage gehen wir nun den nächsten Schritt und erstellen einen Monitor Expert Advisor (EA), der diese Quarter verfolgt und einen Überblick über mögliche Marktreaktionen auf diesen Niveaus bietet. Begleiten Sie uns in diesem Artikel bei der Entwicklung eines Tools zur Zonenerkennung.
Entwicklung des Price Action Analysis Toolkit (Teil 33): Candle-Range Theory Tool
Verbessern Sie Ihr Marktverständnis mit der Candle-Range Theory Suite für MetaTrader 5, einer vollständig MQL5-nativen Lösung, die rohe Preisbalken in Echtzeit-Volatilitätsinformationen umwandelt. Die leichtgewichtige Bibliothek CRangePattern vergleicht die „True Range“ jeder Kerze mit einer adaptiven ATR und klassifiziert sie in dem Moment, in dem sie schließt. Der CRT-Indikator projiziert diese Klassifizierungen dann als scharfe, farbkodierte Rechtecke und Pfeile auf Ihr Chart, die sich verengende Konsolidierungen, explosive Ausbrüche und Verengungen der gesamten Spanne in dem Moment anzeigen, in dem sie auftreten.
Neuronale Netze leicht gemacht (Teil 96): Mehrskalige Merkmalsextraktion (MSFformer)
Die effiziente Extraktion und Integration von langfristigen Abhängigkeiten und kurzfristigen Merkmalen ist nach wie vor eine wichtige Aufgabe bei der Zeitreihenanalyse. Ihr richtiges Verständnis und ihre Integration sind notwendig, um genaue und zuverlässige Prognosemodelle zu erstellen.
Neuronale Netze im Handel: Kontrollierte Segmentierung
In diesem Artikel wird eine Methode zur Analyse komplexer multimodaler Interaktionen und zum Verstehen von Merkmalen erörtert.
Handel mit dem MQL5 Wirtschaftskalender (Teil 6): Automatisierung des Handelseinstiegs mit der Analyse von Nachrichtenereignissen und Countdown-Timern
In diesem Artikel implementieren wir einen automatischen Handelseinstieg mit dem MQL5-Wirtschaftskalender, indem wir nutzerdefinierte Filter und Zeitverschiebungen anwenden, um qualifizierte Nachrichtenereignisse zu identifizieren. Wir vergleichen die prognostizierten und die vorherigen Werte, um zu entscheiden, ob ein KAUF oder VERKAUF eröffnet werden soll. Dynamische Countdown-Timer zeigen die verbleibende Zeit bis zur Veröffentlichung von Nachrichten an und werden nach einem Handel automatisch zurückgesetzt.
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 66): Verwendung von FrAMA-Mustern und des Force Index mit dem Punktprodukt-Kernel
Der FrAMA-Indikator und der Force Index Oscillator sind Trend- und Volumeninstrumente, die bei der Entwicklung eines Expert Advisors kombiniert werden können. Wir knüpfen an unseren letzten Artikel an, in dem dieses Paar vorgestellt wurde, und betrachten die Anwendbarkeit des maschinellen Lernens auf dieses Paar. Wir verwenden ein neuronales Faltungsnetzwerk, das den Punkt-Produkt-Kernel bei der Erstellung von Prognosen mit den Eingaben dieser Indikatoren verwendet. Dies geschieht in einer nutzerdefinierten Signalklassendatei, die mit dem MQL5-Assistenten arbeitet, um einen Expert Advisor zusammenzustellen.
Aufbau eines Handelssystems (Teil 1): Ein quantitativer Ansatz
Viele Händler bewerten Strategien auf der Grundlage kurzfristiger Ergebnisse und geben profitable Systeme oft zu früh auf. Die langfristige Rentabilität hängt jedoch von einer positiven Erwartungshaltung durch eine optimierte Gewinnrate und ein optimiertes Risiko-Ertrags-Verhältnis ab, zusammen mit einer disziplinierten Positionsgröße. Diese Grundsätze können mit Hilfe von Monte-Carlo-Simulationen in Python mit bewährten Metriken validiert werden, um zu beurteilen, ob eine Strategie robust ist oder im Laufe der Zeit wahrscheinlich scheitern wird.
Neuronale Netze im Handel: Der Contrastive Muster-Transformer
Der Contrastive Transformer wurde entwickelt, um Märkte sowohl auf der Ebene einzelner Kerzen als auch auf der Basis ganzer Muster zu analysieren. Dies trägt dazu bei, die Qualität der Modellierung von Markttrends zu verbessern. Darüber hinaus fördert der Einsatz des kontrastiven Lernens zum Abgleich der Darstellungen von Kerzen und Mustern die Selbstregulierung und verbessert die Genauigkeit der Prognosen.
Neuronale Netze im Handel: Knotenadaptive Graphendarstellung mit NAFS
Wir laden Sie ein, sich mit der NAFS-Methode (Node-Adaptive Feature Smoothing) vertraut zu machen, einem nicht-parametrischen Ansatz zur Erstellung von Knotenrepräsentationen, der kein Parametertraining erfordert. NAFS extrahiert Merkmale jedes Knotens anhand seiner Nachbarn und kombiniert diese Merkmale dann adaptiv, um eine endgültige Darstellung zu erstellen.
Handel mit dem MQL5 Wirtschaftskalender (Teil 8): Optimierung des nachrichtengesteuerten Backtests mit intelligenter Ereignisfilterung und gezielten Protokollen
In diesem Artikel optimieren wir unseren Wirtschaftskalender mit intelligenter Ereignisfilterung und gezielter Protokollierung für ein schnelleres, klareres Backtests im Live- und Offline-Modus. Wir rationalisieren die Ereignisverarbeitung und konzentrieren die Protokolle auf kritische Handels- und Dashboard-Ereignisse, um die Strategievisualisierung zu verbessern. Diese Verbesserungen ermöglichen ein nahtloses Testen und Verfeinern von nachrichtengesteuerten Handelsstrategien.
MQL5-Handelswerkzeuge (Teil 2): Verbesserung des interaktiven Handelsassistenten durch dynamisches, visuelles Feedback
In diesem Artikel aktualisieren wir unser Handelsassistenten-Tool durch Hinzufügen von Drag-and-Drop-Funktionen und Hover-Effekten, um die Oberfläche intuitiver und reaktionsschneller zu gestalten. Wir verfeinern das Tool zur Validierung von Echtzeit-Auftrags-Setups, um präzise Handelskonfigurationen im Verhältnis zu den Marktpreisen sicherzustellen. Wir führen auch Backtests dieser Verbesserungen durch, um ihre Zuverlässigkeit zu bestätigen.
Entwicklung des Price Action Analysis Toolkit (Teil 23): Stärkemessung einer Währung
Wissen Sie, was die Richtung eines Währungspaares wirklich bestimmt? Es geht um die Stärke der einzelnen Währungen. In diesem Artikel werden wir die Stärke einer Währung messen, indem wir jedes Paar, in dem sie vorkommt, in einer Schleife durchgehen. Aufgrund dieser Erkenntnisse können wir vorhersagen, wie sich diese Paare auf der Grundlage ihrer relativen Stärke entwickeln werden. Lesen Sie weiter, um mehr zu erfahren.
Arithmetischer Optimierungsalgorithmus (AOA): Von AOA zu SOA (Simpler Optimierungsalgorithmus)
In diesem Artikel stellen wir den Arithmetischen Optimierungsalgorithmus (AOA) vor, der auf einfachen arithmetischen Operationen basiert: Addition, Subtraktion, Multiplikation und Division. Diese grundlegenden mathematischen Operationen dienen als Grundlage für die Suche nach optimalen Lösungen für verschiedene Probleme.
Neuronale Netze im Handel: Parametereffizienter Transformer mit segmentierter Aufmerksamkeit (letzter Teil)
In der vorangegangenen Arbeit haben wir die theoretischen Aspekte des PSformer-Rahmens erörtert, der zwei wichtige Neuerungen in der klassischen Transformer-Architektur beinhaltet: den Parameter-Shared (PS)-Mechanismus und die Berücksichtigung von räumlich-zeitlichen Segmenten (SegAtt). In diesem Artikel setzen wir die Arbeit fort, die wir bei der Implementierung der vorgeschlagenen Ansätze mit MQL5 begonnen haben.
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 59): Verstärkungslernen (DDPG) mit gleitendem Durchschnitt und stochastischen Oszillatormustern
Wir setzen unseren letzten Artikel über DDPG mit MA und stochastischen Indikatoren fort, indem wir andere Schlüsselklassen des Reinforcement Learning untersuchen, die für die Implementierung von DDPG entscheidend sind. Obwohl wir hauptsächlich in Python kodieren, wird das Endprodukt, ein trainiertes Netzwerk, als ONNX nach MQL5 exportiert, wo wir es als Ressource in einen von einem Assistenten zusammengestellten Expert Advisor integrieren.
Fortgeschrittene Algorithmen für die Auftragsausführung in MQL5: TWAP, VWAP und Eisberg-Aufträge
Ein MQL5-Framework, das den Algorithmus der Ausführung auf institutionellem Niveau (TWAP, VWAP, Iceberg) über einen einheitlichen Ausführungsmanager und einen Performance-Analysator für eine reibungslosere, präzisere Auftragsaufteilung und -analyse für Einzelhändler bereitstellt.
Neuronale Netze im Handel: Verwenden von Sprachmodellen für die Zeitreihenprognose
Wir untersuchen weiterhin Modelle zur Zeitreihenprognose. In diesem Artikel machen wir uns mit einem komplexen Algorithmus vertraut, der auf der Verwendung eines vortrainierten Sprachmodells basiert.
Neuronale Netze im Handel: Punktwolkenanalyse (PointNet)
Die direkte Analyse von Punktwolken vermeidet unnötiges Datenwachstum und verbessert die Leistung von Modellen bei Klassifizierungs- und Segmentierungsaufgaben. Solche Ansätze zeigen eine hohe Leistungsfähigkeit und Robustheit gegenüber Störungen in den Originaldaten.
Automatisieren von Handelsstrategien in MQL5 (Teil 25): Trendlinien-Händler mit der Anpassung der kleinsten Quadrate und dynamischer Signalgenerierung
In diesem Artikel entwickeln wir ein Trendlinien-Handelsprogramm, das die kleinsten Quadrate verwendet, um Unterstützungs- und Widerstandstrendlinien zu erkennen, dynamische Kauf- und Verkaufssignale auf der Grundlage von Preisberührungen zu erzeugen und Positionen auf der Grundlage der erzeugten Signale zu eröffnen.
Erstellen eines Handelsadministrator-Panels in MQL5 (Teil V): Zwei-Faktoren-Authentifizierung (2FA)
Heute werden wir uns mit der Verbesserung der Sicherheit für das derzeit in der Entwicklung befindliche Trading Administrator Panel befassen. Wir werden untersuchen, wie MQL5 in eine neue Sicherheitsstrategie implementiert werden kann, indem die Telegram-API für die Zwei-Faktor-Authentifizierung (2FA) verwendet wird. Diese Diskussion wird wertvolle Einblicke in die Anwendung von MQL5 bei der Verstärkung von Sicherheitsmaßnahmen liefern. Darüber hinaus werden wir die Funktion MathRand untersuchen, wobei wir uns auf ihre Funktionalität konzentrieren werden und darauf, wie sie innerhalb unseres Sicherheitsrahmens effektiv genutzt werden kann. Lesen Sie weiter, um mehr zu erfahren!
Einführung in MQL5 (Teil 19): Automatisiertes Erkennen von Wolfe-Wellen
Dieser Artikel zeigt, wie man programmatisch steigende und fallende Muster der Wolfe-Wellen identifiziert und sie mit MQL5 handelt. Wir werden untersuchen, wie man die Strukturen der Wolfe-Wellen programmatisch identifiziert und darauf basierenden Handel mit MQL5 ausführt. Dazu gehören die Erkennung wichtiger Umkehr-Punkte, die Validierung von Musterregeln und die Vorbereitung des EA, um auf die ermittelten Signale zu reagieren.
MQL5-Handelswerkzeuge (Teil 7): Informatives Dashboard für Multi-Symbol-Positionen und Kontoüberwachung
In diesem Artikel entwickeln wir ein Informations-Dashboard in MQL5 zur Überwachung von Multi-Symbol-Positionen und Kontometriken wie Kontostand, Kapital und freie Marge. Wir implementieren ein sortierbares Raster mit Echtzeit-Updates, CSV-Export und einen leuchtenden Header-Effekt, um die Nutzerfreundlichkeit und den visuellen Reiz zu verbessern.
Neuronale Netze im Handel: Hierarchisches Lernen der Merkmale von Punktwolken
Wir untersuchen weiterhin Algorithmen zur Extraktion von Merkmalen aus einer Punktwolke. In diesem Artikel werden wir uns mit den Mechanismen zur Steigerung der Effizienz der PointNet-Methode vertraut machen.
Neuronale Netze im Handel: Hyperbolisches latentes Diffusionsmodell (HypDiff)
Der Artikel befasst sich mit Methoden zur Kodierung von Ausgangsdaten im hyperbolischen latenten Raum durch anisotrope Diffusionsprozesse. Dies trägt dazu bei, die topologischen Merkmale der aktuellen Marktsituation genauer zu erfassen und die Qualität der Analyse zu verbessern.
Automatisieren von Handelsstrategien in MQL5 (Teil 23): Zone Recovery mit Trailing- und Basket-Logik
In diesem Artikel erweitern wir unser Zone Recovery System durch die Einführung von Trailing-Stops und Multi-Basket-Handelsfunktionen. Wir untersuchen, wie die verbesserte Architektur dynamische Trailing-Stops verwendet, um Gewinne zu sichern, und ein Basket-Management-System, um mehrere Handelssignale effizient zu verarbeiten. Durch Implementierung und Backtests demonstrieren wir ein robusteres Handelssystem, das auf eine adaptive Marktperformance zugeschnitten ist.
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 52): Accelerator Oszillator
Der Accelerator Oszillator ist ein weiterer Indikator von Bill Williams, der die Beschleunigung der Preisdynamik und nicht nur ihr Tempo verfolgt. Ähnlich wie der Awesome Oszillator, den wir in einem kürzlich erschienenen Artikel besprochen haben, versucht er, die Verzögerungseffekte zu vermeiden, indem er sich mehr auf die Beschleunigung als auf die Geschwindigkeit konzentriert. Wir untersuchen wie immer, welche Muster wir daraus ableiten können und welche Bedeutung sie für den Handel mit einem von einem Assistenten zusammengestellten Expert Advisor haben könnten.
Entwicklung des Price Action Analysis Toolkit (Teil 36): Direkter Python-Zugang zu MetaTrader 5 Market Streams freischalten
Schöpfen Sie das volle Potenzial Ihres MetaTrader 5 Terminals aus, indem Sie das datenwissenschaftliche Ökosystem von Python und die offizielle MetaTrader 5 Client-Bibliothek nutzen. Dieser Artikel zeigt, wie man Live-Tick- und Minutenbalken-Daten direkt in den Parquet-Speicher authentifiziert und streamt, mit Ta und Prophet ein ausgefeiltes Feature-Engineering durchführt und ein zeitabhängiges Gradient-Boosting-Modell trainiert. Anschließend setzen wir einen leichtgewichtigen Flask-Dienst ein, um Handelssignale in Echtzeit zu liefern. Egal, ob Sie ein hybrides Quant-Framework aufbauen oder Ihren EA mit maschinellem Lernen erweitern, Sie erhalten eine robuste Ende-zu-Ende-Pipeline für den datengesteuerten algorithmischen Handel an die Hand.
Entwicklung fortschrittlicher ICT-Handelssysteme: Implementierung von Signalen in den Indikator "Order Block"
In diesem Artikel erfahren Sie, wie Sie den Indikator „Order Block“ auf der Grundlage des Orderbuchvolumens (Markttiefe) entwickeln und ihn mithilfe von Puffern optimieren können, um die Genauigkeit zu verbessern. Damit ist die aktuelle Phase des Projekts abgeschlossen und die nächste Phase vorbereitet, die die Implementierung einer Risikomanagementklasse und eines Handelsroboters umfasst, der die vom Indikator generierten Signale nutzt.
MetaTrader Tick-Info-Zugang von MQL5-Diensten zur Python-Anwendung über Sockets
Manchmal ist nicht alles in der MQL5-Sprache programmierbar. Und selbst wenn es möglich wäre, bestehende fortgeschrittene Bibliotheken in MQL5 zu konvertieren, wäre dies sehr zeitaufwändig. Dieser Artikel versucht zu zeigen, dass wir die Abhängigkeit vom Windows-Betriebssystem umgehen können, indem wir Tick-Informationen wie Bid, Ask und Time mit MetaTrader-Diensten über Sockets an eine Python-Anwendung übertragen.
Statistische Arbitrage durch kointegrierte Aktien (Teil 1): Engle-Granger- und Johansen-Kointegrationstests
Dieser Artikel soll eine handelsfreundliche, sanfte Einführung in die gebräuchlichsten Kointegrationstests bieten, zusammen mit einem einfachen Leitfaden zum Verständnis ihrer Ergebnisse. Die Engle-Granger- und Johansen-Kointegrationstests können statistisch signifikante Paare oder Gruppen von Vermögenswerten aufzeigen, die eine gemeinsame langfristige Dynamik aufweisen. Der Johansen-Test ist besonders nützlich für Portfolios mit drei oder mehr Vermögenswerten, da er die Stärke der kointegrierenden Vektoren auf einmal berechnet.