Verständnis von Programmierparadigmen (Teil 2): Ein objektorientierter Ansatz für die Entwicklung eines Price Action Expert Advisors
Lernen Sie das objektorientierte Programmierparadigma und seine Anwendung im MQL5-Code kennen. Dieser zweite Artikel geht tiefer auf die Besonderheiten der objektorientierten Programmierung ein und bietet anhand eines praktischen Beispiels praktische Erfahrungen. Sie lernen, wie Sie unseren früher entwickelten prozeduralen Price Action Expert Advisor mit dem EMA-Indikator und Kursdaten der Kerzen in objektorientierten Code umwandeln können.
Aufbau des Kerzenmodells Trend-Constraint (Teil 5): Nachrichtensystem (Teil I)
Wir werden den Hauptcode von MQL5 in bestimmte Codeschnipsel aufteilen, um die Integration von Telegram und WhatsApp für den Empfang von Signalnachrichten von dem Trend Constraint-Indikator zu veranschaulichen, den wir in dieser Artikelserie erstellen. Dies wird sowohl Anfängern als auch erfahrenen Entwicklern helfen, das Konzept leicht zu verstehen. Zunächst werden wir die Einrichtung von MetaTrader 5 für Nachrichten und deren Bedeutung für den Nutzer behandeln. Dies wird den Entwicklern helfen, im Voraus Notizen zu machen, die sie dann in ihren Systemen anwenden können.
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 42): ADX-Oszillator
Der ADX ist ein weiterer relativ beliebter technischer Indikator, der von einigen Händlern verwendet wird, um die Stärke eines vorherrschenden Trends zu messen. Als Kombination von zwei anderen Indikatoren stellt er einen Oszillator dar, dessen Muster wir in diesem Artikel mit Hilfe der MQL5-Assistentengruppe und ihrer Unterstützungsklassen untersuchen.
Datenwissenschaft und ML (Teil 37): Mit Kerzenmustern und AI den Markt schlagen
Kerzenmuster helfen Händlern, die Marktpsychologie zu verstehen und Trends auf den Finanzmärkten zu erkennen. Sie ermöglichen fundiertere Handelsentscheidungen, die zu besseren Ergebnissen führen können. In diesem Artikel werden wir untersuchen, wie man Kerzenmuster mit KI-Modellen nutzen kann, um eine optimale Handelsperformance zu erzielen.
MQL5-Assistenz-Techniken, die Sie kennen sollten (Teil 71): Verwendung der Muster des MACD und des OBV
Die Oszillatoren Moving-Average-Convergence-Divergence (MACD) und On-Balance-Volume (OBV) sind ein weiteres Paar von Indikatoren, die in Verbindung mit einem MQL5 Expert Advisor verwendet werden können. Wie in dieser Artikelserie üblich, ist diese Paarung komplementär, wobei der MACD die Trends bestätigt, während der OBV das Volumen überprüft. Wie üblich verwenden wir den MQL5-Assistenten, um das Potenzial dieser beiden zu erstellen und zu testen.
Datenwissenschaft und ML (Teil 28): Vorhersage mehrerer Futures für EURUSD mithilfe von KI
Bei vielen Modellen der künstlichen Intelligenz ist es üblich, einen einzigen Zukunftswert vorherzusagen. In diesem Artikel werden wir uns jedoch mit der leistungsstarken Technik der Verwendung von maschinellen Lernmodellen zur Vorhersage mehrerer zukünftiger Werte befassen. Dieser Ansatz, der als mehrstufige Prognose bekannt ist, ermöglicht es uns, nicht nur den Schlusskurs von morgen, sondern auch den von übermorgen und darüber hinaus vorherzusagen. Durch die Beherrschung mehrstufiger Prognosen können Händler und Datenwissenschaftler tiefere Einblicke gewinnen und fundiertere Entscheidungen treffen, was ihre Vorhersagefähigkeiten und strategische Planung erheblich verbessert.
Risikomanager für den algorithmischen Handel
Ziel dieses Artikels ist es, die Notwendigkeit des Einsatzes eines Risikomanagers zu beweisen und die Prinzipien der Risikokontrolle im algorithmischen Handel in einer eigenen Klasse zu implementieren, damit jeder die Wirksamkeit des Ansatzes der Risikostandardisierung im Intraday-Handel und bei Investitionen auf den Finanzmärkten überprüfen kann. In diesem Artikel werden wir eine Risikomanager-Klasse für den algorithmischen Handel erstellen. Dies ist eine logische Fortsetzung des vorangegangenen Artikels, in dem wir die Erstellung eines Risikomanagers für den manuellen Handel besprochen haben.
Datenwissenschaft und maschinelles Lernen (Teil 14): Mit Kohonenkarten den Weg in den Märkten finden
Sind Sie auf der Suche nach einem innovativen Ansatz für den Handel, der Ihnen hilft, sich auf den komplexen und sich ständig verändernden Märkten zurechtzufinden? Kohonenkarten (Kohonen maps), eine innovative Form künstlicher neuronaler Netze, können Ihnen helfen, verborgene Muster und Trends in Marktdaten aufzudecken. In diesem Artikel werden wir untersuchen, wie Kohonenkarten funktionieren und wie sie zur Entwicklung intelligenter und effektiverer Handelsstrategien genutzt werden können. Egal, ob Sie ein erfahrener Trader sind oder gerade erst anfangen, Sie werden diesen aufregenden neuen Ansatz für den Handel nicht verpassen wollen.
Entwicklung eines Expertenberaters für mehrere Währungen (Teil 10): Erstellen von Objekten aus einer Zeichenkette
Der EA-Entwicklungsplan umfasst mehrere Stufen, wobei die Zwischenergebnisse in der Datenbank gespeichert werden. Sie können von dort nur als Zeichenketten oder Zahlen wieder abgerufen werden, nicht als Objekte. Wir brauchen also eine Möglichkeit, die gewünschten Objekte im EA anhand der aus der Datenbank gelesenen Strings neu zu erstellen.
Entwicklung eines Toolkit zur Analyse von Preisaktionen (Teil 19): ZigZag Analyzer
Jeder, der Preisaktionen handelt, verwendet Trendlinien manuell, um Trends zu bestätigen und potenzielle Wende- oder Fortsetzungsniveaus zu erkennen. In dieser Serie über die Entwicklung eines Preisaktionsanalyse-Toolkits stellen wir ein Tool vor, das sich auf das Zeichnen von schrägen Trendlinien zur einfachen Marktanalyse konzentriert. Dieses Tool vereinfacht den Prozess für Händler, indem es die wichtigsten Trends und Niveaus, die für eine wirksame Bewertung der Preisaktionen unerlässlich sind, klar umreißt.
MQL5-Assistent-Techniken, die Sie kennen sollten (Teil 19): Bayes'sche Inferenz
Die Bayes'sche Inferenz ist die Anwendung des Bayes-Theorems, um die Wahrscheinlichkeitshypothese zu aktualisieren, wenn neue Informationen zur Verfügung stehen. Dies führt intuitiv zu einer Anpassung in der Zeitreihenanalyse, und so schauen wir uns an, wie wir dies bei der Erstellung von nutzerdefinierten Klassen nicht nur für das Signal, sondern auch für das Money-Management und Trailing-Stops nutzen können.
Entwicklung eines Expertenberaters für mehrere Währungen (Teil 16): Auswirkungen unterschiedlicher Kursverläufe auf die Testergebnisse
Es wird erwartet, dass der in der Entwicklung befindliche EA gute Ergebnisse beim Handel mit verschiedenen Brokern zeigt. Aber im Moment haben wir die Kurse eines MetaQuotes-Demokontos verwendet, um Tests durchzuführen. Lassen Sie uns sehen, ob unser EA bereit ist, auf einem Handelskonto mit anderen Kursen zu arbeiten, als die, die wir während der Tests und der Optimierung verwendet haben.
Kategorientheorie in MQL5 (Teil 6): Monomorphe Pullbacks und epimorphe Pushouts
Die Kategorientheorie ist ein vielfältiger und expandierender Zweig der Mathematik, der erst seit kurzem in der MQL5-Gemeinschaft Beachtung findet. In dieser Artikelserie sollen einige der Konzepte und Axiome erforscht und untersucht werden, mit dem übergeordneten Ziel, eine offene Bibliothek einzurichten, die Einblicke gewährt und hoffentlich auch die Nutzung dieses bemerkenswerten Bereichs für die Strategieentwicklung von Händlern fördert.
Visualisierung der Geschäfte auf dem Chart (Teil 1): Auswahl eines Zeitraums für die Analyse
In diesem Artikel werden wir von Grund auf ein Skript zur einfachen Visualisierung von Handelsgeschäften (deals) für die nachträgliche Analyse von Handelsentscheidungen schreiben. Alle notwendigen Informationen über ein einzelnes Geschäft sollen bequem auf dem Chart angezeigt werden, wobei verschiedene Zeitrahmen gezeichnet werden können.
Entwicklung eines Wiedergabesystems (Teil 42): Chart Trader Projekt (I)
Lassen Sie uns etwas Interessanteres schaffen. Ich möchte die Überraschung nicht verderben, also folgen Sie dem Artikel, um ein besseres Verständnis zu erhalten. Gleich zu Beginn dieser Serie über die Entwicklung des Replay/Simulator-Systems habe ich gesagt, dass die MetaTrader 5-Plattform sowohl in dem von uns entwickelten System als auch auf dem realen Markt auf die gleiche Weise verwendet werden soll. Es ist wichtig, dass dies richtig gemacht wird. Niemand möchte trainieren und lernen, mit einem Werkzeug zu kämpfen, während er während des Kampfes ein anderes nutzen muss.
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 20): Symbolische Regression
Die symbolische Regression ist eine Form der Regression, die von minimalen bis gar keinen Annahmen darüber ausgeht, wie das zugrunde liegende Modell, das die untersuchten Datensätze abbildet, aussehen würde. Obwohl sie mit Bayes'schen Methoden oder neuronalen Netzen implementiert werden kann. Shen wir uns an, wie eine Implementierung mit genetischen Algorithmen helfen kann, eine im MQL5-Assistenten verwendbare Expertensignalklasse anzupassen.
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 21): Testen mit Wirtschaftskalenderdaten
Die Daten des Wirtschaftskalenders sind standardmäßig nicht für das Testen mit Expert Advisors im Strategy Tester verfügbar. Wir sehen uns an, wie Datenbanken helfen können, diese Einschränkung zu umgehen. In diesem Artikel untersuchen wir, wie SQLite-Datenbanken verwendet werden können, um Wirtschaftskalender-Nachrichten zu archivieren, sodass assistentengestützte Expert Advisors diese nutzen können, um Handelssignale zu generieren.
Neuronale Netze im Handel: Direktionale Diffusionsmodelle (DDM)
In diesem Artikel werden gerichtete Diffusionsmodelle diskutiert, die datenabhängiges anisotropes und gerichtetes Rauschen in einem Vorwärtsdiffusionsprozess ausnutzen, um aussagekräftige Graphendarstellungen zu erfassen.
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 50): Der Awesome Oszillator
Der Awesome Oscillator ist ein weiterer Bill-Williams-Indikator, der zur Messung des Momentums verwendet wird. Es kann mehrere Signale generieren, und deshalb überprüfen wir diese auf der Basis von Mustern, wie in früheren Artikeln, indem wir die MQL5-Assistenten-Klassen und -Assembly nutzen.
Aufbau eines nutzerdefinierten Systems zur Erkennung von Marktregimen in MQL5 (Teil 1): Der Indikator
Dieser Artikel beschreibt die Erstellung eines MQL5-Systems zur Erkennung von Marktregimen unter Verwendung statistischer Methoden wie Autokorrelation und Volatilität. Es enthält Code für Klassen zur Klassifizierung von Trend-, Spannen- und Volatilitätsbedingungen sowie einen nutzerdefinierten Indikator.
MQL5-Assistent-Techniken, die Sie kennen sollten (Teil 22): Conditional GANs
Generative Adversarial Networks (GAN) sind eine Kombination von neuronalen Netzen, die sich gegenseitig trainieren, um genauere Ergebnisse zu erzielen. Wir nehmen den bedingten Typ dieser Netze an, da wir eine mögliche Anwendung bei der Vorhersage von Finanzzeitreihen innerhalb einer Klasse von Expertensignalen anstreben.
Neuronale Netze leicht gemacht (Teil 79): Feature Aggregated Queries (FAQ) im Kontext des Staates
Im vorigen Artikel haben wir eine der Methoden zur Erkennung von Objekten in einem Bild kennengelernt. Die Verarbeitung eines statischen Bildes ist jedoch etwas anderes als die Arbeit mit dynamischen Zeitreihen, wie z. B. die Dynamik der von uns analysierten Preise. In diesem Artikel werden wir uns mit der Methode der Objekterkennung in Videos befassen, die dem Problem, das wir lösen wollen, etwas näher kommt.
Entwicklung eines Expertenberaters für mehrere Währungen (Teil 17): Weitere Vorbereitung auf den realen Handel
Derzeit verwendet unser EA die Datenbank, um Initialisierungs-Strings für einzelne Instanzen von Handelsstrategien zu erhalten. Die Datenbank ist jedoch recht groß und enthält viele Informationen, die für den eigentlichen EA-Betrieb nicht benötigt werden. Versuchen wir, die Funktionalität des EA ohne eine obligatorische Verbindung zur Datenbank zu gewährleisten.
Entwicklung eines Expert Advisors für mehrere Währungen (Teil 20): Ordnung in den Ablauf der automatischen Projektoptimierungsphasen bringen (I)
Wir haben bereits eine ganze Reihe von Komponenten entwickelt, die bei der automatischen Optimierung helfen. Bei der Erstellung folgten wir der traditionellen zyklischen Struktur: von der Erstellung eines minimalen funktionierenden Codes bis hin zum Refactoring und dem Erhalt eines verbesserten Codes. Es ist an der Zeit, mit dem Aufräumen unserer Datenbank zu beginnen, die auch eine Schlüsselkomponente in dem von uns geschaffenen System ist.
Propensity Score in der Kausalinferenz
Der Artikel befasst sich mit dem Thema Abgleich von Kausalschlüssen. Der Abgleich wird für den Vergleich sich ähnlichen Beobachtungen in einem Datensatz. Dies ist notwendig, um kausale Wirkungen korrekt zu bestimmen und Verzerrungen zu beseitigen. Der Autor erklärt, wie dies beim Aufbau von Handelssystemen auf der Grundlage des maschinellen Lernens hilft, die bei neuen Daten, auf denen sie nicht trainiert wurden, stabiler werden. Der Propensity Score (Tendenzbewertung) spielt eine zentrale Rolle und wird häufig bei Kausalschlüssen verwendet.
Finden von nutzerdefinierten Währungspaar-Mustern in Python mit MetaTrader 5
Gibt es auf dem Devisenmarkt wiederkehrende Muster und Regelmäßigkeiten? Ich beschloss, mein eigenes System zur Musteranalyse mit Python und MetaTrader 5 zu entwickeln. Eine Art Symbiose aus Mathematik und Programmierung zur Eroberung des Forex.
Entwicklung eines Toolkit zur Analyse von Preisaktionen (Teil 12): External Flow (III) TrendMap
Das Marktgeschehen wird von den Kräften zwischen Bullen und Bären bestimmt. Es gibt bestimmte Niveaus, die der Markt aufgrund der auf ihn wirkenden Kräfte einhält. Fibonacci- und VWAP-Levels sind besonders wirkungsvoll, um das Marktverhalten zu beeinflussen. Begleiten Sie mich in diesem Artikel bei der Erforschung einer Strategie, die auf VWAP und Fibonacci-Levels zur Signalgenerierung basiert.
Automatisieren von Handelsstrategien in MQL5 (Teil 7): Aufbau eines Raster-Handel EA mit dynamischer Losgrößen-Skalierung
In diesem Artikel bauen wir einen Expert Advisor in MQL5 für einen Raster-Handel, der eine dynamische Los-Skalierung verwendet. Wir behandeln die Strategieentwicklung, die Code-Implementierung und den Backtest-Prozess. Abschließend vermitteln wir wichtige Erkenntnisse und bewährte Verfahren zur Optimierung des automatisierten Handelssystems.
Erstellen eines integrierten MQL5-Telegram Expert Advisors (Teil 2): Senden von Signalen von MQL5 an Telegram
In diesem Artikel erstellen wir einen in MQL5-Telegram integrierten Expert Advisor, der Moving Average Crossover Signale an Telegram sendet. Wir erläutern den Prozess der Erzeugung von Handelssignalen aus gleitenden Durchschnittsübergängen, die Implementierung des erforderlichen Codes in MQL5 und die Sicherstellung der nahtlosen Integration. Das Ergebnis ist ein System, das Handelswarnungen in Echtzeit direkt an Ihren Telegram-Gruppenchat sendet.
Hochfrequenz-Arbitrage-Handelssystem in Python mit MetaTrader 5
In diesem Artikel werden wir ein Arbitrationssystem erstellen, das in den Augen der Broker legal bleibt, Tausende von synthetischen Preisen auf dem Forex-Markt erstellt, sie analysiert und erfolgreich mit Gewinn handelt.
Neuronale Netze leicht gemacht (Teil 73): AutoBots zur Vorhersage von Kursbewegungen
Wir fahren fort mit der Erörterung von Algorithmen für das Training von Trajektorievorhersagemodellen. In diesem Artikel werden wir uns mit einer Methode namens „AutoBots“ vertraut machen.
Nachrichtenhandel leicht gemacht (Teil 4): Leistungsverbesserung
Dieser Artikel befasst sich mit Methoden zur Verbesserung der Laufzeit des Experten im Strategietester. Der Code wird so geschrieben, dass die Zeiten der Nachrichtenereignisse in stündliche Kategorien unterteilt werden. Der Zugriff auf diese Ereigniszeiten erfolgt innerhalb der angegebenen Stunde. Dadurch wird sichergestellt, dass der EA sowohl in Umgebungen mit hoher als auch mit niedriger Volatilität effizient ereignisgesteuerte Trades verwalten kann.
Einführung in MQL5 (Teil 15): Ein Anfängerleitfaden zur Erstellung nutzerdefinierter Indikatoren (IV)
In diesem Artikel erfahren Sie, wie Sie einen Preisaktionsindikator in MQL5 erstellen und sich dabei auf Schlüsselpunkte wie Tief (L), Hoch (H), Höheres Tief (HL), Höheres Hoch (HH), Tieferes Tief (LL) und Tieferes Hoch (LH) für die Trendanalyse konzentrieren. Sie erfahren auch, wie Sie die Premium- und Discount-Zonen identifizieren, das 50%-Retracement-Level markieren und das Risiko-Ertrags-Verhältnis zur Berechnung von Gewinnzielen nutzen können. Der Artikel befasst sich auch mit der Bestimmung von Einstiegspunkten, Stop Loss (SL) und Take Profit (TP) auf der Grundlage der Trendstruktur.
Aufbau eines nutzerdefinierten Systems zur Erkennung von Marktregimen in MQL5 (Teil 2): Expert Advisor
Dieser Artikel beschreibt den Aufbau eines adaptiven Expert Advisors (MarketRegimeEA) unter Verwendung des Regime-Detektors aus Teil 1. Er wechselt automatisch die Handelsstrategien und Risikoparameter für steigende, volatile oder Seitwärtsmärkte. Praktische Optimierung, Handhabung von Übergängen und ein Indikator für mehrere Zeitrahmen sind enthalten.
Entwicklung eines Replay Systems (Teil 40): Beginn der zweiten Phase (I)
Heute werden wir über die neue Phase des Replay/Simulator-Systems sprechen. In dieser Phase wird das Gespräch wirklich interessant und sehr inhaltsreich. Ich empfehle Ihnen dringend, den Artikel sorgfältig zu lesen und die darin enthaltenen Links zu nutzen. Dies wird Ihnen helfen, den Inhalt besser zu verstehen.
Entwicklung eines Expertenberaters für mehrere Währungen (Teil 8): Belastungstest und Handhabung eines neuen Balkens
Im weiteren Verlauf haben wir immer mehr gleichzeitig laufende Instanzen von Handelsstrategien in einem EA verwendet. Versuchen wir herauszufinden, wie viele Instanzen wir erreichen können, bevor wir an Ressourcengrenzen stoßen.
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 45): Reinforcement Learning mit Monte-Carlo
Monte-Carlo ist der vierte, alternative Algorithmus des Reinforcement Learning, den wir mit dem Ziel betrachten, seine Implementierung in assistentengestützte Expert Advisors zu untersuchen. Obwohl sie auf Zufallsstichproben beruht, bietet sie umfangreiche Simulationsmöglichkeiten, die wir ausnutzen können.
Kategorientheorie in MQL5 (Teil 12): Ordnungsrelationen
Dieser Artikel, der Teil einer Serie ist, die der kategorientheoretischen Implementierung von Graphen in MQL5 folgt, befasst sich mit Ordnungen. Wir untersuchen, wie Konzepte der Ordnungstheorie monoide Mengen bei der Information über Handelsentscheidungen unterstützen können, indem wir zwei wichtige Ordnungstypen betrachten.
Erstellen eines integrierten MQL5-Telegram Expert Advisors (Teil 4): Modularisierung von Codefunktionen für bessere Wiederverwendbarkeit
In diesem Artikel wird der bestehende Code für das Senden von Nachrichten und Screenshots (screenshot des Terminals) von MQL5 zu Telegram refaktorisiert, indem er in wiederverwendbare, modulare Funktionen aufgeteilt wird. Dadurch wird der Prozess rationalisiert, was eine effizientere Ausführung und eine einfachere Codeverwaltung über mehrere Instanzen hinweg ermöglicht.
MetaTrader 5 Machine Learning Blueprint (Teil 1): Datenlecks und Zeitstempelfehler
Bevor wir überhaupt damit beginnen können, ML für unseren Handel auf dem MetaTrader 5 zu nutzen, müssen wir uns mit einem der am meisten übersehenen Fallstricke befassen - dem Datenleck. In diesem Artikel wird erläutert, wie Datenlecks, insbesondere die Falle von MetaTrader 5-Zeitstempel, die Leistung unseres Modells verzerren und zu unzuverlässigen Handelssignalen führen können. Indem wir uns mit den Mechanismen dieses Problems befassen und Strategien zu seiner Vermeidung vorstellen, ebnen wir den Weg für den Aufbau robuster Modelle für maschinelles Lernen, die zuverlässige Vorhersagen in Live-Handelsumgebungen liefern.