English Русский 中文 Español Deutsch 日本語 한국어 Français Italiano Türkçe
preview
Uso de modelos ONNX em MQL5

Uso de modelos ONNX em MQL5

MetaTrader 5Aprendizado de máquina | 14 julho 2023, 11:27
507 0
MetaQuotes
MetaQuotes

Introdução

Os autores do artigo A CNN-LSTM-Based Model to Forecast Stock Prices" (Wenjie Lu, Jiazheng Li, Yifan Li, Aijun Sun, Jingyang Wang, Complexity magazine, vol. 2020, Article ID 6622927, 10 pages, 2020) compararam vários modelos de previsão de preços de ações:

Stock price data have the characteristics of time series.

At the same time, based on machine learning long short-term memory (LSTM) which has the advantages of analyzing relationships among time series data through its memory function, we propose a forecasting method of stock price based on CNN-LSTM.

In the meanwhile, we use MLP, CNN, RNN, LSTM, CNN-RNN, and other forecasting models to predict the stock price one by one. Moreover, the forecasting results of these models are analyzed and compared. 
The data utilized in this research concern the daily stock prices from July 1, 1991, to August 31, 2020, including 7127 trading days.

In terms of historical data, we choose eight features, including opening price, highest price, lowest price, closing price, volume, turnover, ups and downs, and change. 
Firstly, we adopt CNN to efficiently extract features from the data, which are the items of the previous 10 days.  And then, we adopt LSTM to predict the stock price with the extracted feature data.

According to the experimental results, the CNN-LSTM can provide a reliable stock price forecasting with the highest prediction accuracy.
This forecasting method not only provides a new research idea for stock price forecasting but also provides practical experience for scholars to study financial time series data.

Entre todos os modelos considerados, os modelos CNN-LSTM geraram os melhores resultados durante os experimentos. Neste artigo, veremos como criar um modelo desse tipo para prever séries temporais financeiras e como usar o modelo ONNX criado em um Expert Advisor MQL5.


1. Construção do modelo

O Python conta com um conjunto de bibliotecas especializadas e, nesse sentido, oferece amplos recursos para trabalhar com modelos de aprendizado de máquina. Essas bibliotecas facilitam muito a preparação e o processamento de dados.

Recomendamos o uso de recursos de GPU para maximizar a eficiência dos projetos de aprendizado de máquina. Muitos usuários do Windows tiveram problemas ao tentar instalar a versão atual do TensorFlow (veja os comentários sobre o guia em vídeo e sua versão em texto). Por isso, testamos o TensorFlow 2.10.0 e recomendamos o uso dessa versão. Os cálculos de GPU foram executados na placa de vídeo NVIDIA GeForce RTX 2080 Ti usando as bibliotecas CUDA 11.2 e CUDNN 8.1.0.7.


1.1. Instalação do Python e das bibliotecas

Se você não tiver o Python, deverá instalá-lo. Usamos a versão 3.9.16.

Além disso, instale as bibliotecas (se estiver usando o Conda/Anaconda, execute esses comandos no prompt do Anaconda):

python.exe -m pip install --upgrade pip
pip install --upgrade pandas
pip install --upgrade scikit-learn
pip install --upgrade matplotlib
pip install --upgrade tqdm
pip install --upgrade metatrader5
pip install --upgrade onnx==1.12
pip install --upgrade tf2onnx
pip install --upgrade tensorflow==2.10.0


1.2. Verificação da versão do TensorFlow e da GPU

O código abaixo verifica a versão instalada do TensorFlow e confirma se é possível usar a GPU para computar os modelos:

#check tensorflow version
print(tf.__version__)
#check GPU support
print(len(tf.config.list_physical_devices('GPU'))>0)

Se tudo estiver configurado corretamente, o resultado deverá ser o seguinte

2.10.0
True

A criação e o treinamento do modelo são feitos por um script Python, e as etapas desse processo são discutidas brevemente a seguir.


1.3. Criação e treinamento do modelo

O script começa importando as bibliotecas Python a serem usadas.

#Python libraries
import matplotlib.pyplot as plt 
import MetaTrader5 as mt5
import tensorflow as tf
import numpy as np
import pandas as pd
import tf2onnx
from sklearn.model_selection import train_test_split
from sys import argv

Verifica a versão do TensorFlow e a disponibilidade da GPU:

#check tensorflow version
print(tf.__version__)

2.10.0

#check GPU support
print(len(tf.config.list_physical_devices('GPU'))>0)

True

Inicialize o MetaTrader 5 para operações a partir do Python:

#initialize MetaTrader5 for history data
if not mt5.initialize():
    print("initialize() failed, error code =",mt5.last_error())
    quit()

Informações sobre o terminal MetaTrader 5:

#show terminal info
terminal_info=mt5.terminal_info()
print(terminal_info)

TerminalInfo(community_account=True, community_connection=True, connected=True, dlls_allowed=False, trade_allowed=False, tradeapi_disabled=False, email_enabled=False, ftp_enabled=False, notifications_enabled=False, mqid=False, build=3640, maxbars=100000, codepage=0, ping_last=58768, community_balance=1.0, retransmission=0.015296317559440137, company='MetaQuotes Software Corp.', name='MetaTrader 5', language='English', path='C:\\Program Files\\MetaTrader 5', data_path='C:\\Users\\user\\AppData\\Roaming\\MetaQuotes\\Terminal\\D0E8209F77C8CF37AD8BF550E51FF075', commondata_path='C:\\Users\\user\\AppData\\Roaming\\MetaQuotes\\Terminal\\Common')

#show file path
file_path=terminal_info.data_path+"\\MQL5\\Files\\"
print(file_path)
C:\Users\user\AppData\Roaming\MetaQuotes\Terminal\D0E8209F77C8CF37AD8BF550E51FF075\MQL5\Files\

Imprima o caminho para salvar o modelo (neste exemplo, o script é executado no Jupyter Notebook):

#data path to save the model
data_path=argv[0]
last_index=data_path.rfind("\\")+1
data_path=data_path[0:last_index]
print("data path to save onnx model",data_path)

Caminho de dados para salvar o modelo onnx C:\Users\user\AppData\Roaming\Python\Python39\site-packages\

Prepare as datas para solicitar dados históricos. Em nosso exemplo, solicitamos barras H1 do EURUSD para 120 a partir da data atual:

#set start and end dates for history data
from datetime import timedelta,datetime
end_date = datetime.now()
start_date = end_date - timedelta(days=120)

#print start and end dates
print("data start date=",start_date)
print("data end date=",end_date)
data start date= 2022-11-28 12:28:39.870685
data end date= 2023-03-28 12:28:39.870685

Solicite dados históricos para EURUSD:

#get EURUSD rates (H1) from start_date to end_date
eurusd_rates = mt5.copy_rates_range("EURUSD", mt5.TIMEFRAME_H1, start_date, end_date)

Exibimos os dados baixados:

#check
print(eurusd_rates)


#create dataframe
df = pd.DataFrame(eurusd_rates)

Mostramos o início e o fim do dataframe:

#show dataframe head
df.head()


#show dataframe tail
df.tail()


#show dataframe shape (the number of rows and columns in the data set)
df.shape

(2045, 8)

Selecionamos apenas os preços de fechamento:

#prepare close prices only
data = df.filter(['close']).values

Exibição de dados:

#show close prices
plt.figure(figsize = (18,10))
plt.plot(data,'b',label = 'Original')
plt.xlabel("Hours")
plt.ylabel("Price")
plt.title("EURUSD_H1")
plt.legend()

Gráfico H1 do EURUSD com preços de fechamento

Dimensione os dados de preço brutos para o intervalo [0,1] usando MinMaxScaler:

#scale data using MinMaxScaler
from sklearn.preprocessing import MinMaxScaler
scaler=MinMaxScaler(feature_range=(0,1))
scaled_data = scaler.fit_transform(data)

Os primeiros 80% dos dados serão usados para treinamento.

#training size is 80% of the data
training_size = int(len(scaled_data)*0.80) 
print("training size:",training_size)

training size: 1636

#create train data and check size
train_data_initial = scaled_data[0:training_size,:]
print(len(train_data_initial))

1636

#create test data and check size
test_data_initial= scaled_data[training_size:,:1]
print(len(test_data_initial))

409

A função a seguir cria sequências de treinamento:

#split a univariate sequence into samples
def split_sequence(sequence, n_steps):
    X, y = list(), list()
    for i in range(len(sequence)):
       #find the end of this pattern
       end_ix = i + n_steps
       #check if we are beyond the sequence
       if end_ix > len(sequence)-1:
          break
       #gather input and output parts of the pattern
       seq_x, seq_y = sequence[i:end_ix], sequence[end_ix]
       X.append(seq_x)
       y.append(seq_y)
    return np.array(X), np.array(y)

Constru]imos os conjuntos:

#split into samples
time_step = 120
x_train, y_train = split_sequence(train_data_initial, time_step)
x_test, y_test = split_sequence(test_data_initial, time_step)
#reshape input to be [samples, time steps, features] which is required for LSTM
x_train =x_train.reshape(x_train.shape[0],x_train.shape[1],1)
x_test = x_test.reshape(x_test.shape[0],x_test.shape[1],1)

Formas de tensor para treinamento e teste:

#show shape of train data
x_train.shape

(1516, 120, 1)

#show shape of test data
x_test.shape

(289, 120, 1)

#import keras libraries for the model
import math
from keras.models import Sequential
from keras.layers import Dense,Activation,Conv1D,MaxPooling1D,Dropout
from keras.layers import LSTM
from keras.utils.vis_utils import plot_model
from keras.metrics import RootMeanSquaredError as rmse
from keras import optimizers

Definimos o modelo:

#define the model
model = Sequential()
model.add(Conv1D(filters=256, kernel_size=2,activation='relu',padding = 'same',input_shape=(120,1)))
model.add(MaxPooling1D(pool_size=2))
model.add(LSTM(100, return_sequences = True))
model.add(Dropout(0.3))
model.add(LSTM(100, return_sequences = False))
model.add(Dropout(0.3))
model.add(Dense(units=1, activation = 'sigmoid'))
model.compile(optimizer='adam', loss= 'mse' , metrics = [rmse()])

Exibimos as propriedades do modelo:

#show model
model.summary()

Propriedades do modelo

Treinamento do modelo:

#measure time
import time 
time_calc_start = time.time()

#fit model with 300 epochs
history=model.fit(x_train,y_train,epochs=300,validation_data=(x_test,y_test),batch_size=32,verbose=1)

#calculate time
fit_time_seconds = time.time() - time_calc_start
print("fit time =",fit_time_seconds," seconds.")

Epoch 1/300
48/48 [==============================] - 8s 49ms/step - loss: 0.0129 - root_mean_squared_error: 0.1136 - val_loss: 0.0065 - val_root_mean_squared_error: 0.0804

...

Epoch 299/300
48/48 [==============================] - 2s 35ms/step - loss: 4.5197e-04 - root_mean_squared_error: 0.0213 - val_loss: 4.2535e-04 - val_root_mean_squared_error: 0.0206
Epoch 300/300
48/48 [==============================] - 2s 32ms/step - loss: 4.2967e-04 - root_mean_squared_error: 0.0207 - val_loss: 4.4040e-04 - val_root_mean_squared_error: 0.0210

fit time = 467.4918096065521  seconds.

Nesse caso, o treinamento levou cerca de 8 minutos.

#show training history keys
history.history.keys()

dict_keys(['loss', 'root_mean_squared_error', 'val_loss', 'val_root_mean_squared_error'])

Dinâmica de otimização nos conjuntos de treinamento e teste:

#show iteration-loss graph for training and validation
plt.figure(figsize = (18,10))
plt.plot(history.history['loss'],label='Training Loss',color='b')
plt.plot(history.history['val_loss'],label='Validation-loss',color='g')
plt.xlabel("Iteration")
plt.ylabel("Loss")
plt.title("LOSS")
plt.legend()

Gráfico de iterações da função LOSS

#show iteration-rmse graph for training and validation
plt.figure(figsize = (18,10))
plt.plot(history.history['root_mean_squared_error'],label='Training RMSE',color='b')
plt.plot(history.history['val_root_mean_squared_error'],label='Validation-RMSE',color='g')
plt.xlabel("Iteration")
plt.ylabel("RMSE")
plt.title("RMSE")
plt.legend()


Gráfico de iteração do RMSE

#evaluate training data
model.evaluate(x_train,y_train, batch_size = 32)

48/48 [==============================] - 1s 22ms/step - loss: 2.9911e-04 - root_mean_squared_error: 0.0173
[0.00029911252204328775, 0.01729486882686615]
#evaluate testing data
model.evaluate(x_test,y_test, batch_size = 32)

10/10 [==============================] - 0s 31ms/step - loss: 4.4040e-04 - root_mean_squared_error: 0.0210

[0.00044039846397936344, 0.020985672250390053]

Geração de uma previsão em uma amostra de treinamento:

#prediction using training data
train_predict = model.predict(x_train)
plot_y_train = y_train.reshape(-1,1)

48/48 [==============================] - 2s 18ms/step

Exibe gráficos reais e previstos para o intervalo de treinamento:

#show actual vs predicted (training) graph
plt.figure(figsize=(18,10))
plt.plot(scaler.inverse_transform(plot_y_train),color = 'b', label = 'Original')
plt.plot(scaler.inverse_transform(train_predict),color='red', label = 'Predicted')
plt.title("Prediction Graph Using Training Data")
plt.xlabel("Hours")
plt.ylabel("Price")
plt.legend()
plt.show()

Gráfico de previsão na amostra de treinamento

Geração de previsão na amostra de teste:

#prediction using testing data
test_predict = model.predict(x_test)
plot_y_test = y_test.reshape(-1,1)

11/11 [==============================] - 0s 11ms/step

Para calcular as métricas, precisamos converter os dados do intervalo [0,1]; também usamos o MinMaxScaler para fazer isso.

#calculate metrics
from sklearn import metrics
from sklearn.metrics import r2_score
#transform data to real values
value1=scaler.inverse_transform(plot_y_test)
value2=scaler.inverse_transform(test_predict)
#calc score
score = np.sqrt(metrics.mean_squared_error(value1,value2))
print("RMSE         : {}".format(score))
print("MSE          :", metrics.mean_squared_error(value1,value2))
print("R2 score     :",metrics.r2_score(value1,value2))

RMSE         : 0.0015151631684117558
MSE          : 2.295719426911551e-06
R2 score     : 0.9683533377809039

#show actual vs predicted (testing) graph
plt.figure(figsize=(18,10))
plt.plot(scaler.inverse_transform(plot_y_test),color = 'b',  label = 'Original')
plt.plot(scaler.inverse_transform(test_predict),color='g', label = 'Predicted')
plt.title("Prediction Graph Using Testing Data")
plt.xlabel("Hours")
plt.ylabel("Price")
plt.legend()
plt.show()

Gráfico de previsão na amostra de teste


Exportamos o modelo para um arquivo onnx:

# save model to ONNX
output_path = data_path+"model.eurusd.H1.120.onnx"
onnx_model = tf2onnx.convert.from_keras(model, output_path=output_path)
print(f"model saved to {output_path}")

output_path = file_path+"model.eurusd.H1.120.onnx"
onnx_model = tf2onnx.convert.from_keras(model, output_path=output_path)
print(f"saved model to {output_path}")

# finish
mt5.shutdown()

O código completo do script Python como Jupyter Notebook está anexado ao artigo.

No artigoCNN-LSTM-Based Model to Forecast Stock Prices", o melhor valor R^2=0,9646 foi obtido para modelos com arquitetura CNN-LSTM; em nosso exemplo, a rede CNN-LSTM apresentou o melhor resultado de R^2=0,9684. De acordo com os resultados, modelos desse tipo podem ser eficientes na solução de problemas de previsão.

Consideramos um exemplo de um script Python que cria e treina modelos CNN-LSTM para prever séries temporais financeiras.


2. Usando o modelo no MetaTrader 5

2.1. Antes de começar a usá-lo. O que você precisa saber

Há duas maneiras de criar um modelo: Você pode usar o OnnxCreate para criar um modelo a partir de um arquivo ONNX ou o OnnxCreateFromBuffer para criá-lo a partir de um array de dados.

Se o modelo ONNX for usado como recurso em um EA, será necessário recompilar o EA sempre que o modelo for alterado.

Nem todos os modelos têm tensor de entrada e/ou saída de tamanhos totalmente definidos. Normalmente, essa é a primeira dimensão responsável pelo tamanho do pacote. Antes de executar um modelo, você deve especificar explicitamente os tamanhos usando as funções OnnxSetInputShape e OnnxSetOutputShape.

Os dados de entrada do modelo devem ser preparados da mesma forma que foram feitos no treinamento do modelo.

Para os dados de entrada e saída, recomendamos o uso de matrizes, vetores e/ou matrizes do mesmo tipo que são usados no modelo. Nesse caso, você não precisará converter os dados ao executar o modelo. Se os dados não puderem ser representados no tipo necessário, eles serão automaticamente convertidos.

Use o OnnxRun para inferir (executar) seu modelo. Observe que um modelo pode ser executado várias vezes.

Depois de usar o modelo, libere-o usando a função OnnxRelease.

Documentação completa dos modelos ONNX em MQL5..


2.2. Leitura do arquivo onnx e recuperação de informações de entrada e saída

Para usar nosso modelo, precisamos saber a localização do modelo, o tipo e a forma dos dados de entrada, bem como o tipo e a forma dos dados de saída.De acordo com o script criado anteriormente, model.eurusd.H1.120.onnx está localizado na mesma pasta com o script Python que gerou o arquivo onnx.A entrada é float32, 120 preços de fechamento normalizados (para trabalhar com o tamanho do lote igual a 1); a saída é float32, que é um preço normalizado previsto pelo modelo.

Também criamos o arquivo onnx na pasta MQL5\Files para obter os dados de entrada e saída do modelo usando um script MQL5.

//+------------------------------------------------------------------+
//|                                                OnnxModelInfo.mq5 |
//|                                  Copyright 2023, MetaQuotes Ltd. |
//|                                             https://www.mql5.com |
//+------------------------------------------------------------------+
#property copyright "Copyright 2023, MetaQuotes Ltd."
#property link      "https://www.mql5.com"
#property version   "1.00"

#define UNDEFINED_REPLACE 1

//+------------------------------------------------------------------+
//| Script program start function                                    |
//+------------------------------------------------------------------+
void OnStart()
  {
   string file_names[];
   if(FileSelectDialog("Open ONNX model",NULL,"ONNX files (*.onnx)|*.onnx|All files (*.*)|*.*",FSD_FILE_MUST_EXIST,file_names,NULL)<1)
      return;

   PrintFormat("Create model from %s with debug logs",file_names[0]);

   long session_handle=OnnxCreate(file_names[0],ONNX_DEBUG_LOGS);
   if(session_handle==INVALID_HANDLE)
     {
      Print("OnnxCreate error ",GetLastError());
      return;
     }

   OnnxTypeInfo type_info;

   long input_count=OnnxGetInputCount(session_handle);
   Print("model has ",input_count," input(s)");
   for(long i=0; i<input_count; i++)
     {
      string input_name=OnnxGetInputName(session_handle,i);
      Print(i," input name is ",input_name);
      if(OnnxGetInputTypeInfo(session_handle,i,type_info))
         PrintTypeInfo(i,"input",type_info);
     }

   long output_count=OnnxGetOutputCount(session_handle);
   Print("model has ",output_count," output(s)");
   for(long i=0; i<output_count; i++)
     {
      string output_name=OnnxGetOutputName(session_handle,i);
      Print(i," output name is ",output_name);
      if(OnnxGetOutputTypeInfo(session_handle,i,type_info))
         PrintTypeInfo(i,"output",type_info);
     }

   OnnxRelease(session_handle);
  }
//+------------------------------------------------------------------+
//| PrintTypeInfo                                                    |
//+------------------------------------------------------------------+
void PrintTypeInfo(const long num,const string layer,const OnnxTypeInfo& type_info)
  {
   Print("   type ",EnumToString(type_info.type));
   Print("   data type ",EnumToString(type_info.element_type));

   if(type_info.dimensions.Size()>0)
     {
      bool   dim_defined=(type_info.dimensions[0]>0);
      string dimensions=IntegerToString(type_info.dimensions[0]);
      for(long n=1; n<type_info.dimensions.Size(); n++)
        {
         if(type_info.dimensions[n]<=0)
            dim_defined=false;
         dimensions+=", ";
         dimensions+=IntegerToString(type_info.dimensions[n]);
        }
      Print("   shape [",dimensions,"]");
      //--- not all dimensions defined
      if(!dim_defined)
         PrintFormat("   %I64d %s shape must be defined explicitly before model inference",num,layer);
      //--- reduce shape
      uint reduced=0;
      long dims[];
      for(long n=0; n<type_info.dimensions.Size(); n++)
        {
         long dimension=type_info.dimensions[n];
         //--- replace undefined dimension
         if(dimension<=0)
            dimension=UNDEFINED_REPLACE;
         //--- 1 can be reduced
         if(dimension>1)
           {
            ArrayResize(dims,reduced+1);
            dims[reduced++]=dimension;
           }
        }
      //--- all dimensions assumed 1
      if(reduced==0)
        {
         ArrayResize(dims,1);
         dims[reduced++]=1;
        }
      //--- shape was reduced
      if(reduced<type_info.dimensions.Size())
        {
         dimensions=IntegerToString(dims[0]);
         for(long n=1; n<dims.Size(); n++)
           {
            dimensions+=", ";
            dimensions+=IntegerToString(dims[n]);
           }
         string sentence="";
         if(!dim_defined)
            sentence=" if undefined dimension set to "+(string)UNDEFINED_REPLACE;
         PrintFormat("   shape of %s data can be reduced to [%s]%s",layer,dimensions,sentence);
        }
     }
   else
      PrintFormat("no dimensions defined for %I64d %s",num,layer);
  }
//+------------------------------------------------------------------+

Na janela de seleção de arquivos, selecionamos o arquivo onnx salvo em MQL5\Files, criamos um modelo a partir do arquivo usando o OnnxCreate e obtivemos essas informações.

Create model from model.eurusd.H1.120.onnx with debug logs
ONNX: Creating and using per session threadpools since use_per_session_threads_ is true
ONNX: Dynamic block base set to 0
ONNX: Initializing session.
ONNX: Adding default CPU execution provider.
ONNX: Total shared scalar initializer count: 0
ONNX: Total fused reshape node count: 0
ONNX: Removing NodeArg 'Gather_out0'. It is no longer used by any node.
ONNX: Removing NodeArg 'Gather_token_1_out0'. It is no longer used by any node.
ONNX: Total shared scalar initializer count: 0
ONNX: Total fused reshape node count: 0
ONNX: Removing initializer 'sequential/conv1d/Conv1D/ExpandDims_1:0'. It is no longer used by any node.
ONNX: Use DeviceBasedPartition as default
ONNX: Saving initialized tensors.
ONNX: Done saving initialized tensors
ONNX: Session successfully initialized.
model has 1 input(s)
0 input name is conv1d_input
   type ONNX_TYPE_TENSOR
   data type ONNX_DATA_TYPE_FLOAT
   shape [-1, 120, 1]
   0 input shape must be defined explicitly before model inference
   shape of input data can be reduced to [120] if undefined dimension set to 1
model has 1 output(s)
0 output name is dense
   type ONNX_TYPE_TENSOR
   data type ONNX_DATA_TYPE_FLOAT
   shape [-1, 1]
   0 output shape must be defined explicitly before model inference
   shape of output data can be reduced to [1] if undefined dimension set to 1

Como solicitamos as informações de depuração,

   long session_handle=OnnxCreate(file_names[0],ONNX_DEBUG_LOGS);

recebemos várias mensagens com o prefixo ONNX.

Vemos que o modelo realmente tem uma entrada e uma saída. Aqui, a primeira dimensão do tensor de entrada e a primeira dimensão do tensor de saída não estão definidas. Supõe-se que essas dimensões sejam responsáveis pelo tamanho do lote. Portanto, antes de inferir o modelo, devemos especificar explicitamente com quais tamanhos vamos trabalhar (OnnxSetInputShape e OnnxSetOutputShape). Normalmente, o modelo é alimentado apenas com um conjunto de dados. Um exemplo detalhado é dado no parágrafo seguinte "Exemplo de uso do modelo ONNX em um EA".

Ao preparar os dados, não é necessário usar um array com dimensões [1, 120, 1]. Podemos inserir um array unidimensional ou um vetor de 120 elementos.


2.3. Exemplo de uso do modelo ONNX em um EA

Declarações e definições

#include <Trade\Trade.mqh>

input double InpLots = 1.0;    // Lots amount to open position

#resource "Python/model.120.H1.onnx" as uchar ExtModel[]

#define SAMPLE_SIZE 120

long     ExtHandle=INVALID_HANDLE;
int      ExtPredictedClass=-1;
datetime ExtNextBar=0;
datetime ExtNextDay=0;
float    ExtMin=0.0;
float    ExtMax=0.0;
CTrade   ExtTrade;

//--- price movement prediction
#define PRICE_UP   0
#define PRICE_SAME 1
#define PRICE_DOWN 2

Função OnInit

//+------------------------------------------------------------------+
//| Expert initialization function                                   |
//+------------------------------------------------------------------+
int OnInit()
  {
   if(_Symbol!="EURUSD" || _Period!=PERIOD_H1)
     {
      Print("model must work with EURUSD,H1");
      return(INIT_FAILED);
     }

//--- create a model from static buffer
   ExtHandle=OnnxCreateFromBuffer(ExtModel,ONNX_DEFAULT);
   if(ExtHandle==INVALID_HANDLE)
     {
      Print("OnnxCreateFromBuffer error ",GetLastError());
      return(INIT_FAILED);
     }

//--- since not all sizes defined in the input tensor we must set them explicitly
//--- first index - batch size, second index - series size, third index - number of series (only Close)
   const long input_shape[] = {1,SAMPLE_SIZE,1};
   if(!OnnxSetInputShape(ExtHandle,0,input_shape))
     {
      Print("OnnxSetInputShape error ",GetLastError());
      return(INIT_FAILED);
     }

//--- since not all sizes defined in the output tensor we must set them explicitly
//--- first index - batch size, must match the batch size of the input tensor
//--- second index - number of predicted prices (we only predict Close)
   const long output_shape[] = {1,1};
   if(!OnnxSetOutputShape(ExtHandle,0,output_shape))
     {
      Print("OnnxSetOutputShape error ",GetLastError());
      return(INIT_FAILED);
     }
//---
   return(INIT_SUCCEEDED);
  }

Trabalhamos somente com EURUSD, H1, porque usamos os dados do símbolo/período atual.

Nosso modelo está incluído no EA como um recurso. O EA é totalmente autossuficiente e não requer a leitura de um arquivo onnx externo. Um modelo é criado a partir do array de recursos.

As formas de dados de entrada e saída devem ser definidas explicitamente.

Função OnTick

//+------------------------------------------------------------------+
//| Expert tick function                                             |
//+------------------------------------------------------------------+
void OnTick()
  {
//--- check new day
   if(TimeCurrent()>=ExtNextDay)
     {
      GetMinMax();
      //--- set next day time
      ExtNextDay=TimeCurrent();
      ExtNextDay-=ExtNextDay%PeriodSeconds(PERIOD_D1);
      ExtNextDay+=PeriodSeconds(PERIOD_D1);
     }

//--- check new bar
   if(TimeCurrent()<ExtNextBar)
      return;
//--- set next bar time
   ExtNextBar=TimeCurrent();
   ExtNextBar-=ExtNextBar%PeriodSeconds();
   ExtNextBar+=PeriodSeconds();
//--- check min and max
   double close=iClose(_Symbol,_Period,0);
   if(ExtMin>close)
      ExtMin=close;
   if(ExtMax<close)
      ExtMax=close;

//--- predict next price
   PredictPrice();
//--- check trading according to prediction
   if(ExtPredictedClass>=0)
      if(PositionSelect(_Symbol))
         CheckForClose();
      else
         CheckForOpen();
  }

Definimos o início de um novo dia. O início do dia é usado para atualizar os valores mínimo e máximo da sequência de 120 dias para normalizar os preços na sequência de 120 horas. O modelo foi treinado nessas condições, que devemos seguir ao preparar os dados de entrada.

//+------------------------------------------------------------------+
//| Get minimal and maximal Close for last 120 days                  |
//+------------------------------------------------------------------+
void GetMinMax(void)
  {
   vectorf close;
   close.CopyRates(_Symbol,PERIOD_D1,COPY_RATES_CLOSE,0,SAMPLE_SIZE);
   ExtMin=close.Min();
   ExtMax=close.Max();
  }

Se necessário, podemos modificar o Low e o High ao longo do dia.

Função de previsão:

//+------------------------------------------------------------------+
//| Predict next price                                               |
//+------------------------------------------------------------------+
void PredictPrice(void)
  {
   static vectorf output_data(1);            // vector to get result
   static vectorf x_norm(SAMPLE_SIZE);       // vector for prices normalize

//--- check for normalization possibility
   if(ExtMin>=ExtMax)
     {
      ExtPredictedClass=-1;
      return;
     }
//--- request last bars
   if(!x_norm.CopyRates(_Symbol,_Period,COPY_RATES_CLOSE,1,SAMPLE_SIZE))
     {
      ExtPredictedClass=-1;
      return;
     }
   float last_close=x_norm[SAMPLE_SIZE-1];
//--- normalize prices
   x_norm-=ExtMin;
   x_norm/=(ExtMax-ExtMin);
//--- run the inference
   if(!OnnxRun(ExtHandle,ONNX_NO_CONVERSION,x_norm,output_data))
     {
      ExtPredictedClass=-1;
      return;
     }
//--- denormalize the price from the output value
   float predicted=output_data[0]*(ExtMax-ExtMin)+ExtMin;
//--- classify predicted price movement
   float delta=last_close-predicted;
   if(fabs(delta)<=0.00001)
      ExtPredictedClass=PRICE_SAME;
   else
     {
      if(delta<0)
         ExtPredictedClass=PRICE_UP;
      else
         ExtPredictedClass=PRICE_DOWN;
     }
  }

Primeiro, verificamos se podemos normalizar. A normalização é implementada como na função MinMaxScaler do Python.

#scale data
from sklearn.preprocessing import MinMaxScaler
scaler=MinMaxScaler(feature_range=(0,1))
scaled_data = scaler.fit_transform(data)

Portanto, o código de normalização é muito simples e direto.

Os vetores para dados de entrada e para receber o resultado são definidos como estáticos. Isso garante um buffer não realocável que existe durante todo o tempo de vida do programa. Assim, os tensores de entrada e saída do modelo ONNX não são recriados toda vez que o modelo é executado.

A função principal é OnnxRun. O sinalizador ONNX_NO_CONVERSION indica que os dados de entrada e saída não devem ser convertidos, pois o tipo float MQL5 corresponde exatamente a ONNX_DATA_TYPE_FLOAT. O sinalizador ONNX_DEBUG não é definido.

Depois disso, desnormalizamos os dados obtidos no preço previsto e determinamos a classe: se o preço subirá, descerá ou não mudará.


A estratégia de negociação é simples. No início de cada hora, verificamos a previsão de preço para o final dessa hora. Se o preço previsto subir, compramos. Se o modelo prevê um movimento de queda, vendemos.

//+------------------------------------------------------------------+
//| Check for open position conditions                               |
//+------------------------------------------------------------------+
void CheckForOpen(void)
  {
   ENUM_ORDER_TYPE signal=WRONG_VALUE;
//--- check signals
   if(ExtPredictedClass==PRICE_DOWN)
      signal=ORDER_TYPE_SELL;    // sell condition
   else
     {
      if(ExtPredictedClass==PRICE_UP)
         signal=ORDER_TYPE_BUY;  // buy condition
     }

//--- open position if possible according to signal
   if(signal!=WRONG_VALUE && TerminalInfoInteger(TERMINAL_TRADE_ALLOWED))
     {
      double price;
      double bid=SymbolInfoDouble(_Symbol,SYMBOL_BID);
      double ask=SymbolInfoDouble(_Symbol,SYMBOL_ASK);
      if(signal==ORDER_TYPE_SELL)
         price=bid;
      else
         price=ask;
      ExtTrade.PositionOpen(_Symbol,signal,InpLots,price,0.0,0.0);
     }
  }
//+------------------------------------------------------------------+
//| Check for close position conditions                              |
//+------------------------------------------------------------------+
void CheckForClose(void)
  {
   bool bsignal=false;
//--- position already selected before
   long type=PositionGetInteger(POSITION_TYPE);
//--- check signals
   if(type==POSITION_TYPE_BUY && ExtPredictedClass==PRICE_DOWN)
      bsignal=true;
   if(type==POSITION_TYPE_SELL && ExtPredictedClass==PRICE_UP)
      bsignal=true;

//--- close position if possible
   if(bsignal && TerminalInfoInteger(TERMINAL_TRADE_ALLOWED))
     {
      ExtTrade.PositionClose(_Symbol,3);
      //--- open opposite
      CheckForOpen();
     }
  }

Agora, vamos verificar o desempenho do EA no testador de estratégias. Para testar o EA desde o início do ano, o modelo deve ser treinado usando dados anteriores. Portanto, modificamos ligeiramente o script Python, removendo partes não utilizadas e alterando a data de término do treinamento para que não se sobreponha ao período de teste.

O script ONNX.eurusd.H1.120.Training.py está localizado na subpasta Python e é executado diretamente no MetaEditor. O modelo ONNX resultante será salvo na mesma subpasta Python e será usado como um recurso durante a compilação do EA.

# Copyright 2023, MetaQuotes Ltd.
# https://www.mql5.com

# python libraries
import MetaTrader5 as mt5
import tensorflow as tf
import numpy as np
import pandas as pd
import tf2onnx

# input parameters
inp_model_name = "model.eurusd.H1.120.onnx"
inp_history_size = 120

if not mt5.initialize():
    print("initialize() failed, error code =",mt5.last_error())
    quit()

# we will save generated onnx-file near our script to use as resource
from sys import argv
data_path=argv[0]
last_index=data_path.rfind("\\")+1
data_path=data_path[0:last_index]
print("data path to save onnx model",data_path)

# set start and end dates for history data
from datetime import timedelta, datetime
#end_date = datetime.now()
end_date = datetime(2023, 1, 1, 0)
start_date = end_date - timedelta(days=inp_history_size)

# print start and end dates
print("data start date =",start_date)
print("data end date =",end_date)

# get rates
eurusd_rates = mt5.copy_rates_range("EURUSD", mt5.TIMEFRAME_H1, start_date, end_date)

# create dataframe
df = pd.DataFrame(eurusd_rates)

# get close prices only
data = df.filter(['close']).values

# scale data
from sklearn.preprocessing import MinMaxScaler
scaler=MinMaxScaler(feature_range=(0,1))
scaled_data = scaler.fit_transform(data)

# training size is 80% of the data
training_size = int(len(scaled_data)*0.80) 
print("Training_size:",training_size)
train_data_initial = scaled_data[0:training_size,:]
test_data_initial = scaled_data[training_size:,:1]

# split a univariate sequence into samples
def split_sequence(sequence, n_steps):
    X, y = list(), list()
    for i in range(len(sequence)):
       # find the end of this pattern
       end_ix = i + n_steps
       # check if we are beyond the sequence
       if end_ix > len(sequence)-1:
          break
       # gather input and output parts of the pattern
       seq_x, seq_y = sequence[i:end_ix], sequence[end_ix]
       X.append(seq_x)
       y.append(seq_y)
    return np.array(X), np.array(y)

# split into samples
time_step = inp_history_size
x_train, y_train = split_sequence(train_data_initial, time_step)
x_test, y_test = split_sequence(test_data_initial, time_step)

# reshape input to be [samples, time steps, features] which is required for LSTM
x_train =x_train.reshape(x_train.shape[0],x_train.shape[1],1)
x_test = x_test.reshape(x_test.shape[0],x_test.shape[1],1)

# define model
from keras.models import Sequential
from keras.layers import Dense, Activation, Conv1D, MaxPooling1D, Dropout, Flatten, LSTM
from keras.metrics import RootMeanSquaredError as rmse
model = Sequential()
model.add(Conv1D(filters=256, kernel_size=2, activation='relu',padding = 'same',input_shape=(inp_history_size,1)))
model.add(MaxPooling1D(pool_size=2))
model.add(LSTM(100, return_sequences = True))
model.add(Dropout(0.3))
model.add(LSTM(100, return_sequences = False))
model.add(Dropout(0.3))
model.add(Dense(units=1, activation = 'sigmoid'))
model.compile(optimizer='adam', loss= 'mse' , metrics = [rmse()])

# model training for 300 epochs
history = model.fit(x_train, y_train, epochs = 300 , validation_data = (x_test,y_test), batch_size=32, verbose=2)

# evaluate training data
train_loss, train_rmse = model.evaluate(x_train,y_train, batch_size = 32)
print(f"train_loss={train_loss:.3f}")
print(f"train_rmse={train_rmse:.3f}")

# evaluate testing data
test_loss, test_rmse = model.evaluate(x_test,y_test, batch_size = 32)
print(f"test_loss={test_loss:.3f}")
print(f"test_rmse={test_rmse:.3f}")

# save model to ONNX
output_path = data_path+inp_model_name
onnx_model = tf2onnx.convert.from_keras(model, output_path=output_path)
print(f"saved model to {output_path}")

# finish
mt5.shutdown()


Teste de um EA baseado no modelo ONNX

Agora, vamos testar o EA com dados históricos no testador de estratégias. Especificamos os mesmos parâmetros que usamos para treinar o modelo: o símbolo EURUSD e o período de tempo H1.

O intervalo de teste não inclui o período de treinamento: ele começa no início do ano (01/01/2023). 

Testes de configurações para EAs


Como, de acordo com a estratégia, os sinais são verificados uma vez no início de cada hora (o Expert Advisor verifica o aparecimento de uma nova barra), o modo de simulação de ticks não importa - o OnTick será trabalhado no testador apenas uma vez por barra.

//+------------------------------------------------------------------+
//| Expert tick function                                             |
//+------------------------------------------------------------------+
void OnTick()
  {
//--- check new day
   if(TimeCurrent()>=ExtNextDay)
     {
      GetMinMax();
      //--- set next day time
      ExtNextDay=TimeCurrent();
      ExtNextDay-=ExtNextDay%PeriodSeconds(PERIOD_D1);
      ExtNextDay+=PeriodSeconds(PERIOD_D1);
     }

//--- check new bar
   if(TimeCurrent()<ExtNextBar)
      return;
//--- set next bar time
   ExtNextBar=TimeCurrent();
   ExtNextBar-=ExtNextBar%PeriodSeconds();
   ExtNextBar+=PeriodSeconds();
//--- check min and max
   float close=(float)iClose(_Symbol,_Period,0);
   if(ExtMin>close)
      ExtMin=close;
   if(ExtMax<close)
      ExtMax=close;

//--- predict next price
   PredictPrice();
//--- check trading according to prediction
   if(ExtPredictedClass>=0)
      if(PositionSelect(_Symbol))
         CheckForClose();
      else
         CheckForOpen();
  }


Com esse tipo de teste, o teste de 3 meses leva alguns segundos. Obtemos resultados imediatos.

Resultado do teste do Expert Advisor



Agora, vamos modificar a estratégia de negociação para permitir a abertura de posição por um sinal e o fechamento por Stop Loss (SL) ou Take Profit (TP).

input double InpLots       = 1.0;    // Lots amount to open position
input bool   InpUseStops   = true;   // Use stops in trading
input int    InpTakeProfit = 500;    // TakeProfit level
input int    InpStopLoss   = 500;    // StopLoss level
//+------------------------------------------------------------------+
//| Check for open position conditions                               |
//+------------------------------------------------------------------+
void CheckForOpen(void)
  {
   ENUM_ORDER_TYPE signal=WRONG_VALUE;
//--- check signals
   if(ExtPredictedClass==PRICE_DOWN)
      signal=ORDER_TYPE_SELL;    // sell condition
   else
     {
      if(ExtPredictedClass==PRICE_UP)
         signal=ORDER_TYPE_BUY;  // buy condition
     }

//--- open position if possible according to signal
   if(signal!=WRONG_VALUE && TerminalInfoInteger(TERMINAL_TRADE_ALLOWED))
     {
      double price,sl=0,tp=0;
      double bid=SymbolInfoDouble(_Symbol,SYMBOL_BID);
      double ask=SymbolInfoDouble(_Symbol,SYMBOL_ASK);
      if(signal==ORDER_TYPE_SELL)
        {
         price=bid;
         if(InpUseStops)
           {
            sl=NormalizeDouble(bid+InpStopLoss*_Point,_Digits);
            tp=NormalizeDouble(ask-InpTakeProfit*_Point,_Digits);
           }
        }
      else
        {
         price=ask;
         if(InpUseStops)
           {
            sl=NormalizeDouble(ask-InpStopLoss*_Point,_Digits);
            tp=NormalizeDouble(bid+InpTakeProfit*_Point,_Digits);
           }
        }
      ExtTrade.PositionOpen(_Symbol,signal,InpLots,price,sl,tp);
     }
  }
//+------------------------------------------------------------------+
//| Check for close position conditions                              |
//+------------------------------------------------------------------+
void CheckForClose(void)
  {
//--- position should be closed by stops
   if(InpUseStops)
      return;

   bool bsignal=false;
//--- position already selected before
   long type=PositionGetInteger(POSITION_TYPE);
//--- check signals
   if(type==POSITION_TYPE_BUY && ExtPredictedClass==PRICE_DOWN)
      bsignal=true;
   if(type==POSITION_TYPE_SELL && ExtPredictedClass==PRICE_UP)
      bsignal=true;

//--- close position if possible
   if(bsignal && TerminalInfoInteger(TERMINAL_TRADE_ALLOWED))
     {
      ExtTrade.PositionClose(_Symbol,3);
      //--- open opposite
      CheckForOpen();
     }
  }

Vamos especificar o parâmetro InpUseStops = true, o que significa que os níveis TP e SL são definidos quando uma posição é aberta.

Parâmetros de entrada para um EA usando SL/TP


Os resultados do teste usando os níveis de SL/TP do início do ano são mostrados abaixo.

Resultados do teste do EA com níveis de SL e TP


O código-fonte completo do EA e o modelo treinado para o início de 2023 estão anexados ao artigo.


Considerações finais

O artigo mostra que não há nada difícil em usar modelos ONNX em programas MQL5. Na verdade, a aplicação de modelos é a parte mais fácil, enquanto é muito mais difícil obter um modelo ONNX adequado.

Observe que o modelo usado no artigo é disponibilizado apenas para fins de demonstração, para mostrar como trabalhar com modelos ONNX usando a linguagem MQL5. O Expert Advisor apresentado neste artigo não se destina a negociações em contas reais.

Traduzido do russo pela MetaQuotes Ltd.
Artigo original: https://www.mql5.com/ru/articles/12373

Arquivos anexados |
MQL5.zip (1243.88 KB)
Teoria das Categorias em MQL5 (Parte 5): Equalizadores Teoria das Categorias em MQL5 (Parte 5): Equalizadores
A teoria das categorias é um ramo diversificado e em expansão da matemática que só recentemente começou a ser abordado na comunidade MQL5. Esta série de artigos tem como objetivo analisar alguns de seus conceitos para criar uma biblioteca aberta e utilizar ainda mais essa maravilhosa seção na criação de estratégias de negociação.
Algoritmos de otimização populacionais: Algoritmo semelhante ao eletromagnetismo (EM) Algoritmos de otimização populacionais: Algoritmo semelhante ao eletromagnetismo (EM)
O artigo descreve os princípios, os métodos e as possibilidades de aplicação do EM a diferentes problemas de otimização. Ele uma ferramenta de otimização eficiente, capaz de lidar com grandes quantidades de dados e funções multidimensionais.
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 20): FOREX (I) Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 20): FOREX (I)
intenção inicial deste artigo, não será cobrir todas as características do FOREX. Mas sim e apenas, adequar o sistema, de forma que você possa fazer no mínimo, um replay de mercado. Já a simulação, ficará para um outro momento. No entanto, caso você não os tenha os ticks, e tenha apenas as barras. Pode com algum trabalho, simular possíveis transações, que possam ter ocorrido no FOREX. Isto até que eu mostre como adaptar o simulador. O fato de se tentar trabalhar com dados vindos do FOREX, dentro do sistema, sem que ele seja modificado. Faz com que ocorra erros de range.
Teoria das Categorias em MQL5 (Parte 4): Intervalos, experimentos e composições Teoria das Categorias em MQL5 (Parte 4): Intervalos, experimentos e composições
A teoria das categorias representa um segmento diversificado e em constante expansão da matemática, que até agora está relativamente pouco explorado na comunidade MQL5. Esta série de artigos tem como objetivo descrever alguns de seus conceitos a fim de criar uma biblioteca aberta e utilizar ainda mais essa seção notável na criação de estratégias de negociação.