有关MQL5交易系统自动化的文章

icon

阅读 交易系统 文章,拓宽核心思路。了解如何使用蜡烛条图表的统计方法和形态,如何过滤信号以及何处使用信号机指标。

该 MQL5 向导将帮助您 创建无需编程的机器人 以便快速检验您的交易思路。使用向导来学习有关的 遗传算法

添加一个新的文章
最近 | 最佳
preview
创建 MQL5-Telegram 集成 EA 交易(第 4 部分):模块化代码函数以增强可重用性

创建 MQL5-Telegram 集成 EA 交易(第 4 部分):模块化代码函数以增强可重用性

在本文中,我们将现有的用于从 MQL5 向 Telegram 发送消息和截图的代码重构为可重复使用的模块化函数。这将简化流程,实现跨多个实例的更高效执行和更轻松的代码管理。
preview
构建MQL5自优化智能交易系统(EA)(第四部分):动态头寸规模调整

构建MQL5自优化智能交易系统(EA)(第四部分):动态头寸规模调整

成功运用算法交易需要持续的跨学科学习。然而,无限的可能性可能会耗费数年努力,却无法取得切实成果。为解决这一问题,我们提出一个循序渐进增加复杂性的框架,让交易者能够迭代优化策略,而非将无限时间投入不确定的结果中。
preview
开发回放系统(第 47 部分):Chart Trade 项目(六)

开发回放系统(第 47 部分):Chart Trade 项目(六)

最后,我们的 Chart Trade 指标开始与 EA 互动,以交互方式传输信息。因此,在本文中,我们将对该指标进行改进,使其功能足以与任何 EA 配合使用。这样,我们就可以访问 Chart Trade 指标,并像实际连接 EA 一样使用它。不过,我们将以比以前更有趣的方式来实现这一目标。
preview
交易中的神经网络:双曲型潜在扩散模型(终篇)

交易中的神经网络:双曲型潜在扩散模型(终篇)

正如 HypDIff 框架所提议,使用各向异性扩散过程针对双曲潜在空间中的初始数据进行编码,助力保留当前市场状况的拓扑特征,并提升其分析品质。在上一篇文章中,我们开始利用 MQL5 实现所提议的方式。今天,我们将继续我们已开始的工作,并得出合乎逻辑的结论。
preview
交易中的神经网络:配备注意力机制(MASAAT)的智代融汇(终章)

交易中的神经网络:配备注意力机制(MASAAT)的智代融汇(终章)

在上一篇文章中,我们讲述了多智代自适应框架 MASAAT,其用一组智代的融汇在不同数据尺度下对多模态时间序列进行交叉分析。今天我们将继续实现该框架方法的 MQL5 版本,并将这项工作带至逻辑完结。
preview
神经网络变得简单(第 88 部分):时间序列密集编码器(TiDE)

神经网络变得简单(第 88 部分):时间序列密集编码器(TiDE)

为尝试获得最准确的预测,研究人员经常把预测模型复杂化。而反过来又会导致模型训练和维护成本增加。这样的增长总是公正的吗?本文阐述了一种算法,即利用线性模型的简单性和速度,并演示其结果与拥有更复杂架构的最佳模型相当。
preview
数据科学与机器学习(第 20 部分):算法交易洞察,MQL5 中 LDA 与 PCA 之间的较量

数据科学与机器学习(第 20 部分):算法交易洞察,MQL5 中 LDA 与 PCA 之间的较量

在剖析 MQL5 交易环境中这些强大的降维技术的应用程序时,让我们揭示它们背后的秘密。深入探讨线性判别分析(LDA)和主成分分析(PCA)的细微差别,深入了解它们对策略开发和市场分析的影响。
preview
MQL5 简介(第 17 部分):构建趋势反转 EA 交易

MQL5 简介(第 17 部分):构建趋势反转 EA 交易

本文教初学者如何在 MQL5 中构建一个基于图表形态识别的 EA 交易系统,该系统利用趋势线突破和反转进行交易。通过学习如何动态检索趋势线值并将其与价格走势进行比较,读者将能够开发出能够识别和交易图表形态(如上升和下降趋势线、通道、楔形、三角形等)的 EA 交易。
preview
您应当知道的 MQL5 向导技术(第 48 部分):比尔·威廉姆斯(Bill Williams)短吻鳄

您应当知道的 MQL5 向导技术(第 48 部分):比尔·威廉姆斯(Bill Williams)短吻鳄

短吻鳄指标是比尔·威廉姆斯(Bill Williams)的创意,是一种多功能趋势识别指标,可产生清晰的信号,并经常与其它指标结合使用。MQL5 向导类和汇编允许我们在形态基础上测试各种信号,故此我们也研究了这个指标。
preview
您应当知道的 MQL5 向导技术(第 51 部分):配以 SAC 的强化学习

您应当知道的 MQL5 向导技术(第 51 部分):配以 SAC 的强化学习

柔性参与者评论者是一种利用 3 个神经网络的强化学习算法。一名参与者网络和 2 个评论者网络。这些机器学习模型按主从伙伴关系配对,其中所建模评论者能提升参与者网络的预测准确性。在这些序列中引入 ONNX 的同时,我们探讨了如何将这些思路作为由向导汇编的智能系统的自定义信号,推进测试。
preview
您应当知道的 MQL5 向导技术(第 15 部分):协同牛顿多项式的支持向量机

您应当知道的 MQL5 向导技术(第 15 部分):协同牛顿多项式的支持向量机

支持向量机基于预定义的类,按探索增加数据维度的效果进行数据分类。这是一种监督学习方法,鉴于其与多维数据打交道的潜力,它相当复杂。至于本文,我们会研究进行价格行为分类时,如何运用牛顿多项式更有效地做到非常基本的 2-维数据实现。
preview
您应当知道的 MQL5 向导技术(第 49 部分):搭配近端政策优化的强化学习

您应当知道的 MQL5 向导技术(第 49 部分):搭配近端政策优化的强化学习

近端政策优化是强化学习中的另一种算法,通常以网络形式以非常小的增量步幅更新政策,以便确保模型的稳定性。我们以向导汇编的智能系统来试验其作用,如同我们之前的文章一样。
preview
神经网络变得简单(第 86 部分):U-形变换器

神经网络变得简单(第 86 部分):U-形变换器

我们继续研究时间序列预测算法。在本文中,我们将讨论另一种方法:U-形变换器。
preview
您应当知道的 MQL5 向导技术(第 52 部分):加速器振荡器

您应当知道的 MQL5 向导技术(第 52 部分):加速器振荡器

加速器振荡指标是另一款比尔·威廉姆斯(Bill Williams)指标,它跟踪价格动量的加速,而不光是其速度。尽管很像我们在最近的一篇文章中回顾的动量(Awesome)振荡器,但它更专注于加速度,而不仅是速度,来寻求避免滞后效应。我们一如既往地验证我们可从中获得哪些形态,以及每种形态由向导汇编到智能交易系统后,在交易中具有的意义。
preview
价格行为分析工具包开发(第九部分):外部数据流

价格行为分析工具包开发(第九部分):外部数据流

本文将利用专为高级分析而设计的外部库,探索一个全新的分析维度。这些库(如pandas)提供了强大的工具,用于处理和解读复杂数据,使交易者能够更深入地洞察市场动态。通过整合此类技术,我们能够整合原始数据与可执行策略之间的差距。加入我们,共同为这一创新方法奠定基础,并释放技术与交易专业知识相结合的潜力。
preview
开发回放系统(第 34 部分):订单系统 (三)

开发回放系统(第 34 部分):订单系统 (三)

在本文中,我们将完成构建的第一阶段。虽然这部分内容很快就能完成,但我将介绍之前没有讨论过的细节。我将解释一些许多人不理解的问题。你知道为什么要按 Shift 或 Ctrl 键吗?
preview
开发回放系统(第 42 部分):图表交易项目(I)

开发回放系统(第 42 部分):图表交易项目(I)

我们来创建一些更有趣的东西。我不想毁掉惊喜,故此紧随本文以便更好地理解。自本系列开发回放/模拟器系统的最开始,我就一直说,我们的意图是按相同的方式使用 MetaTrader 5 平台,无论正在开发的系统中,亦或真实市场中。重点是要正确完成。没有人愿意在训练和学习时用一种工具,而在战斗时不得不换另一种工具。
preview
您应当知道的 MQL5 向导技术(第 29 部分):继续学习率与 MLP

您应当知道的 MQL5 向导技术(第 29 部分):继续学习率与 MLP

我们主要验证自适应学习率,圆满考察学习率对智能系统性能的敏感性。这些学习率旨在在训练过程中针对层中的每个参数进行自定义,故我们评估潜在收益相较于预期的性能损失。
preview
您应当知道的 MQL5 向导技术(第 50 部分):动量振荡器

您应当知道的 MQL5 向导技术(第 50 部分):动量振荡器

动量振荡器是另一个用于衡量动量的比尔·威廉姆斯(Bill Williams)指标。它能生成多个信号,因此我们像之前的文章一样,利用 MQL5 向导类和汇编,在形态基础上审查这些信号。
preview
探索达瓦斯箱体突破策略中的高级机器学习技术

探索达瓦斯箱体突破策略中的高级机器学习技术

达瓦斯箱体突破策略由尼古拉斯·达瓦斯(Nicolas Darvas)提出,是一种技术交易方法:当股价突破预设的"箱体"区间上沿时,视为潜在买入信号,表明强劲的上升动能。本文将以该策略为例,探讨三种高级机器学习技术的应用。其中包括:利用机器学习模型直接生成交易信号(而非仅过滤交易);采用连续型信号(而非离散型信号);使用基于不同时间框架训练的模型进行交易验证。
preview
将 MQL5 与数据处理包集成 (第 2 部分):机器学习和预测分析

将 MQL5 与数据处理包集成 (第 2 部分):机器学习和预测分析

在我们关于将 MQL5 与数据处理包集成的系列文章中,我们深入研究了机器学习和预测分析的强大组合。我们将探索如何将 MQL5 与流行的机器学习库无缝连接,以便为金融市场提供复杂的预测模型。
preview
MQL5 交易工具包(第 5 部分):使用仓位函数扩展历史管理 EX5 库

MQL5 交易工具包(第 5 部分):使用仓位函数扩展历史管理 EX5 库

了解如何创建可导出的 EX5 函数,以高效查询和保存历史仓位数据。在本分步指南中,我们将通过开发检索最近平仓的关键属性的模块来扩展历史管理 EX5 库。这些属性包括净利润、交易持续时间、基于点的止损、止盈、利润值以及其他各种重要细节。
preview
开发回放系统(第 78 部分):新 Chart Trade(五)

开发回放系统(第 78 部分):新 Chart Trade(五)

在本文中,我们将研究如何实现部分接收方代码。在这里我们将实现一个 EA 交易来测试和了解协议交互是如何工作的。此处提供的内容仅用于教育目的。在任何情况下,除了学习和掌握所提出的概念外,都不应出于任何目的使用此应用程序。
preview
在Python中使用Numba对交易策略进行快速测试

在Python中使用Numba对交易策略进行快速测试

本文实现了一个快速策略测试器,它使用Numba对机器学习模型进行快速策略测试。它的速度比纯 Python 策略回测器快 50 倍。作者推荐使用该库来加速数学计算,尤其是那些涉及循环的计算。
preview
使用 MQL5 经济日历进行交易(第三部分):添加货币、重要性和时间过滤器

使用 MQL5 经济日历进行交易(第三部分):添加货币、重要性和时间过滤器

在本文中,我们将在 MQL5 经济日历仪表板中添加过滤器,以便通过货币、重要性和时间来细化新闻事件的显示。我们首先为每个类别建立过滤标准,然后将这些标准集成到仪表板中,以仅显示相关事件。最后,我们确保每个过滤器都能动态更新,为交易者提供专注的、实时的经济信息。
preview
交易中的神经网络:免掩码注意力方式预测价格走势

交易中的神经网络:免掩码注意力方式预测价格走势

在本文中,我们将讨论免掩码注意力变换器(MAFT)方法,及其在交易领域的应用。不同于传统的变换器,即处理序列时需要数据掩码,MAFT 通过消除掩码需求来优化注意力过程,显著改进了计算效率。
preview
交易中的神经网络:受控分段(终章)

交易中的神经网络:受控分段(终章)

我们继续上一篇文章中开启的工作,使用 MQL5 构建 RefMask3D 框架。该框架旨在全面研究点云中的多模态互动和特征分析,随后基于自然语言提供的描述进行目标对象识别。
preview
交易中的神经网络:受控分段

交易中的神经网络:受控分段

在本文中。我们将讨论一种复杂的多模态交互分析和特征理解的方法。
preview
交易中的神经网络:通过Adam-mini优化减少内存消耗

交易中的神经网络:通过Adam-mini优化减少内存消耗

提高模型训练和收敛效率的一个方向是改进优化方法。Adam-mini是一种自适应优化方法,旨在改进基础的Adam算法。
preview
交易中的神经网络:超点变换器(SPFormer)

交易中的神经网络:超点变换器(SPFormer)

在本文中,我们概述一种基于“超点变换器”(SPFormer) 的三维物体分段方法,其剔除了对中间数据聚合的需求。这加快了分段过程,并提高了模型的性能。
preview
非洲水牛优化(ABO)

非洲水牛优化(ABO)

本文介绍了非洲水牛优化(ABO)算法,这是一种于2015年开发的元启发式方法,基于这些动物的独特行为。文章详细描述了算法实现的各个阶段及其在解决复杂问题时的效率,这使得它成为优化领域中一个有价值的工具。
preview
神经网络变得简单(第 82 部分):常微分方程模型(NeuralODE)

神经网络变得简单(第 82 部分):常微分方程模型(NeuralODE)

在本文中,我们将讨论另一种模型类型,它们旨在研究环境状态的动态。
preview
交易中的神经网络:配备注意力机制(MASAAT)的智代融汇

交易中的神经网络:配备注意力机制(MASAAT)的智代融汇

我们概述多智代自适应投资组合优化框架(MASAAT),其结合了注意力机制和时间序列分析。MASAAT 生成一组智代,分析价格序列和方向变化,能够在不同细节层次识别资产价格的明显波动。
preview
在MQL5中构建自定义市场状态检测系统(第一部分):指标

在MQL5中构建自定义市场状态检测系统(第一部分):指标

本文详细介绍了如何使用自相关和波动性等统计方法,在MQL5中创建一个市场状态检测系统。文中提供了用于分类趋势、盘整和波动行情的类代码,以及一个自定义指标。
preview
您应当知道的 MQL5 向导技术(第 34 部分):采用非常规 RBM 进行价格嵌入

您应当知道的 MQL5 向导技术(第 34 部分):采用非常规 RBM 进行价格嵌入

受限玻尔兹曼(Boltzmann)机是一种神经网络形式,开发于 1980 年代中叶,当时的计算资源非常昂贵。在其初创时,它依赖于 Gibbs 采样,以及对比散度来降低维度,或捕获输入训练数据集上的隐藏概率/属性。我们验证当 RBM 为预测多层感知器“嵌入”价格时,反向传播如何执行类似的操作。
preview
让新闻交易轻松上手(第4部分):性能增强

让新闻交易轻松上手(第4部分):性能增强

本文将深入探讨改进EA在策略测试器中运行时间的方法,通过编写代码将新闻事件时间按小时分类。在指定的小时段内将访问这些新闻事件。这样确保了EA能够在高波动性和低波动性环境中高效管理事件驱动的交易。
preview
创建 MQL5-Telegram 集成 EA 交易(第 7 部分):图表指标自动化的命令分析

创建 MQL5-Telegram 集成 EA 交易(第 7 部分):图表指标自动化的命令分析

在本文中,我们将探讨如何将 Telegram 命令与 MQL5 集成,以自动在交易图表上添加指标。我们涵盖了解析用户命令、在MQL5中执行命令以及测试系统以确保基于指标的交易顺利进行的过程
preview
MQL5 交易工具包(第 6 部分):使用最新成交的挂单函数扩展历史管理 EX5 库

MQL5 交易工具包(第 6 部分):使用最新成交的挂单函数扩展历史管理 EX5 库

了解如何创建可导出函数的 EX5 模块,无缝查询和保存最近填写的挂单数据。在本全面的分步指南中,我们将通过开发专用和分隔的函数来检索最后填写的挂单的基本属性,从而增强历史管理 EX5 库。这些属性包括订单类型、设置时间、执行时间、填充类型以及有效管理和分析挂单交易历史所需的其他关键细节。
preview
您应当知道的 MQL5 向导技术(第 41 部分):深度-Q-网络

您应当知道的 MQL5 向导技术(第 41 部分):深度-Q-网络

“深度-Q-网络” 是一种强化学习算法,在机器学习模块的训练过程中,神经网络参与预测下一个 Q 值和理想动作。我们曾研究过另一种强化学习算法 “Q-学习”。本文因此出示了另一个如何配以强化学习训练 MLP 的示例,可于自定义信号类中所用。
preview
市场模拟(第一部分):跨期订单(一)

市场模拟(第一部分):跨期订单(一)

今天我们将开始第二阶段,研究市场回放/模拟系统。首先,我们将展示跨期订单的可能解决方案。我会向你展示解决方案,但它还不是最终的。这将是我们在不久的将来需要解决的一个问题的可能解决方案。