MQL5交易工具(第二部分):为交互式交易助手添加动态视觉反馈
本文通过引入拖拽面板功能和悬停交互效果,对交易助手工具进行全面升级,使界面操作更直观且响应更迅速。我们优化了工具的实时订单验证机制,确保交易参数能根据市场价格动态校准。同时,我们通过回测验证了这些改进的可靠性。
交易中的神经网络:针对加密货币市场的记忆扩充上下文感知学习(MacroHFT)
我邀请您探索 MacroHFT 框架,该框架应用了上下文感知强化学习和记忆,利用宏观经济数据和自适应智代改进加密货币高频交易决策。
交易中的神经网络:配备概念强化的多智代系统(终篇)
我们继续实现 FinCon 框架作者提议的方式。FinCon 是一款基于大语言模型(LLM)的多智代系统。今天,我们将实现必要的模块,并在真实历史数据上全面测试模型。
您应当知道的 MQL5 向导技术(第 56 部分):比尔·威廉姆斯(Bill Williams)分形
比尔·威廉姆斯(Bill Williams)的分形是一个强有力的指标,在价格图标上初现时很容易被忽视。它出现得过于繁忙,大概也不够精锐。我们的靶标是配以由向导汇编的智能系统针对所有指标进行前向漫游测试,检验其在各种形态下能够取得怎样的成果,从而揭开该指标的面纱。
MQL5 简介(第 17 部分):构建趋势反转 EA 交易
本文教初学者如何在 MQL5 中构建一个基于图表形态识别的 EA 交易系统,该系统利用趋势线突破和反转进行交易。通过学习如何动态检索趋势线值并将其与价格走势进行比较,读者将能够开发出能够识别和交易图表形态(如上升和下降趋势线、通道、楔形、三角形等)的 EA 交易。
交易中的神经网络:配备概念强化的多智代系统(终篇)
我们继续实现 FinCon 框架作者提议的方式。FinCon 是一款基于大语言模型(LLM)的多智代系统。今天,我们将实现必要的模块,并在真实历史数据上全面测试模型。
交易中的神经网络:基于 ResNeXt 模型的多任务学习(终篇)
我们继续探索基于 ResNeXt 的多任务学习框架,其特征是模块化、高计算效率、及识别数据中稳定形态的能力。使用单一编码器和专用“头”可降低模型过度拟合风险,提升预测品质。
台球优化算法(BOA)
BOA方法灵感源自经典的台球运动,它将寻求最优解的过程模拟为一场游戏:球体致力于落入代表最佳结果的球袋之中。本文将探讨BOA的基本原理、数学模型及其在解决各类优化问题中的效率。