MQL5中交易策略的自动化实现(第六部分):掌握智能资金交易中的订单块(Order Block)检测技巧
在本文中,我们将运用纯粹的价格行为分析方法,在MQL5平台上实现订单块的自动化检测。我们将界定订单块的定义,实现其检测功能,并集成自动化交易执行系统。最后,我们通过回测来评估该策略的表现。
开发回放系统(第 57 部分):了解测试服务
需要注意的一点是:虽然服务代码没有包含在本文中,只会在下一篇文章中提供,但我会解释一下,因为我们将使用相同的代码作为我们实际开发的跳板。因此,请保持专注和耐心。等待下一篇文章,因为每一天都变得更加有趣。
交易中的神经网络:使用小波变换和多任务注意力的模型(终篇)
在上一篇文章中,我们探索了理论基础,并开始实现多任务-Stockformer 框架的方式,其结合了小波变换和自注意力多任务模型。我们继续实现该框架的算法,并评估其在真实历史数据上的有效性。
算法交易中的神经符号化系统:结合符号化规则和神经网络
本文讲述开发混合交易系统的经验,即结合经典技术分析与神经网络。作者从基本形态分析、神经网络结构、到交易决策背后的机制,提供了系统架构的详细分析,并分享了真实代码和实践观察。
MQL5中的高级内存管理与优化技术
探索在MQL5交易系统中优化内存使用的实用技巧。学习构建高效、稳定且运行速度快的智能交易系统(EA)和指标。我们将深入探究MQL5中内存的实际运作方式、致使系统运行变慢或出现故障的常见陷阱,以及——最为关键的是——如何解决这些问题。
开发回放系统(第 38 部分):铺路(II)
许多认为自己是 MQL5 程序员的人,其实并不具备我在本文中将要概述的基础知识。许多人认为 MQL5 是一个有限的工具,但实际原因是他们尚未具备所需的知识。所以,如果您有啥不知道,不要为此感到羞愧。最好是因为不去请教而感到羞愧。简单地强制 MetaTrader 5 禁用指标重叠,并不能确保指标和智能系统之间的双向通信。我们离这个目标还很远,但指标在图表上没有重叠的事实给了我们一些信心。
神经网络变得简单(第 72 部分):噪声环境下预测轨迹
预测未来状态的品质在“目标条件预测编码”方法中扮演着重要角色,我们曾在上一篇文章中讨论过。在本文中,我想向您介绍一种算法,它可以显著提高随机环境(例如金融市场)中的预测品质。
您应当知道的 MQL5 向导技术(第 19 部分):贝叶斯(Bayesian)推理
贝叶斯(Bayesian)推理是运用贝叶斯定理,在获得新信息时更新概率假设。这在直观上倾向于时间序列分析中的适应性,那么我们来看看如何运用它来构建自定义类,不仅针对信号,还有资金管理、和尾随破位。
开发回放系统(第 43 部分):Chart Trade 项目(II)
大多数想要或梦想学习编程的人实际上并不知道自己在做什么。他们的活动包括试图以某种方式创造事物。然而,编程并不是为了定制合适的解决方案。这样做会产生更多的问题而不是解决方案。在这里,我们将做一些更高级、更与众不同的事情。
基于人工生态系统的优化(AEO)算法
本文探讨了一种元启发式算法——基于人工生态系统的优化(Artificial Ecosystem-based Optimization, AEO)算法。该算法通过生成初始解种群并应用自适应更新策略,模拟生态系统各组成部分之间的相互作用。文中详细阐述了AEO算法的运行阶段,包括消耗阶段与分解阶段,以及不同智能体的行为策略。文章还介绍了该算法的特点和优势。
开发回放系统(第 69 部分):取得正确的时间(二)
今天我们将看看为什么我们需要 iSpread 功能。同时,我们将了解当没有可用的分时报价时,系统如何通知我们柱形的剩余时间。此处提供的内容仅用于教育目的。在任何情况下,除了学习和掌握所提出的概念外,都不应出于任何目的使用此应用程序。
MQL5 中的高级订单执行算法:TWAP、VWAP 和冰山订单
MQL5 框架通过统一的执行管理器和性能分析器,将机构级执行算法(TWAP、VWAP、冰山订单)带给散户交易者,从而实现更流畅、更精确的订单切片和分析。
交易中的神经网络:搭配预测编码的混合交易框架(终篇)
我们继续研习 StockFormer 混合交易系统,其结合了预测编码和强化学习算法,来分析金融时间序列。该系统基于三个变换器分支,搭配多样化多头注意力(DMH-Attn)机制,能够捕获资产之间的复杂形态、和相互依赖关系。之前,我们已领略了该框架的理论层面,并实现了 DMH-Attn 机制。今天,我们就来聊聊模型架构和训练。
构建MQL5自优化智能交易系统(第二部分):美元兑日元(USDJPY)剥头皮策略
今天我们齐聚一堂,挑战为美元兑日元(USDJPY)货币对打造一套全新交易策略。我们将基于日线图上的K线形态开发交易策略,因为日线级别的信号通常蕴含更强的市场动能。初始策略已实现盈利,这激励我们进一步优化策略,并增加风险控制层以保护已获利资本。
外汇投资组合优化:风险价值理论与马科维茨理论的融合
外汇市场中的投资组合交易是如何运作的?我们如何将用于优化投资组合权重的马科维茨投资组合理论与用于优化投资组合风险的VaR模型结合起来?我们基于投资组合理论创建一个EA,一方面,我们将获得低风险;另一方面,获得可接受的长期盈利能力。
在MQL5中实现基于经济日历新闻事件的突破型智能交易系统(EA)
重大经济数据发布前后市场波动率通常显著上升,为突破交易策略提供了理想的环境。在本文中,我们将阐述基于经济日历的突破策略的实现过程。我们将全面覆盖从创建用于解析和存储日历数据的类,到利用这些数据开发符合实际的回测系统,最终实现实盘交易执行代码的完整流程。
开发回放系统(第 61 部分):玩转服务(二)
在本文中,我们将研究使回放/模拟系统更高效、更安全地运行的修改。我也不会对那些想要充分利用这些类的人置之不理。此外,我们将探讨 MQL5 中的一个特定问题,即在使用类时降低代码性能,并解释如何解决它。
交易中的神经网络:具有相对编码的变换器
自我监督学习是分析大量无标签数据的有效方法。通过令模型适应金融市场的特定特征来提供效率,这有助于提升传统方法的有效性。本文讲述了一种替代的注意力机制,它参考输入之间的相对依赖关系。
交易中的神经网络:多智代自适应模型(终篇)
在上一篇文章中,我们讲述了多智代自适应框架 MASA,它结合了强化学习方法和自适应策略,在动荡的市场条件下提供了盈利能力、及风险之间的和谐平衡。我们已在该框架内构建了单个智代的功能。在本文中,我们继续我们已开始的工作,令其得出合乎逻辑的结论。
开发回放系统(第 51 部分):事情变得复杂(三)
在本文中,我们将研究 MQL5 编程领域最困难的问题之一:如何正确获取图表 ID,以及为什么对象有时不会绘制在图表上。此处提供的材料仅用于教学目的,在任何情况下,除了学习和掌握所提出的概念外,都不应出于任何目的使用此应用程序。
市场模拟(第四部分):创建 C_Orders 类(一)
在本文中,我们将开始创建 C_Orders 类,以便能够向交易服务器发送订单。我们将循序渐进地进行,目标是通过消息系统详细说明这一过程的具体实现方式。
开发回放系统(第 50 部分):事情变得复杂 (二)
我们将解决图表 ID 问题,同时开始为用户提供使用个人模板对所需资产进行分析和模拟的能力。此处提供的材料仅用于教学目的,不应被视为除学习和掌握所提供概念以外的任何目的的应用。
您应当知道的 MQL5 向导技术(第 14 部分):以 STF 进行多意向时间序列预测
“时空融合”就是在数据建模中同时使用“空间”和“时间”度量值,主要用在遥感,和一系列其它基于视觉的活动,以便更好地了解我们的周边环境。归功于一篇已发表的论文,我们通过验证它对交易者的潜力,采取一种新颖的方式来运用它。
您应当知道的 MQL5 向导技术(第 30 部分):聚焦机器学习中的批量归一化
批量归一化是把数据投喂给机器学习算法(如神经网络)之前对数据进行预处理。始终要留意算法所用的激活类型,完成该操作。因此,我们探索在向导组装的智能系统帮助下,能够采取的不同方式,并从中受益。
神经网络变得简单(第 81 部分):上下文引导运动分析(CCMR)
在以前的工作中,我们总是评估环境的当前状态。与此同时,指标变化的动态始终保持在“幕后”。在本文中,我打算向您介绍一种算法,其允许您评估 2 个连续环境状态数据之间的直接变化。
交易中的神经网络:广义 3D 引用表达分段
在分析市场状况时,我们将其切分为不同的段落,标识关键趋势。然而,传统的分析方法往往只关注一个层面,从而限制了正确的感知。在本文中,我们将学习一种方法,可选择多个对象,以确保对形势进行更全面、及多层次的理解。
您应当知道的 MQL5 向导技术(第 20 部分):符号回归
符号回归是一种回归形式,它从最小、甚或没有假设开始,而底层模型看起来应当映射所研究数据集。尽管它可以通过贝叶斯(Bayesian)方法、或神经网络来实现,但我们看看如何使用遗传算法实现,从而有助于在 MQL5 向导中使用自定义的智能信号类。
价格行为分析工具包开发(第十六部分):引入四分之一理论(2)—— 侵入探测器智能交易系统(EA)
在前一篇文章中,我们介绍了一个名为“四分位绘图脚本”的简单脚本。现在,我们在此基础上更进一步,创建一个用于监控的智能交易系统(EA),以跟踪这些四分位水平,并对这些价位可能引发的市场反应进行监督。请随我们一同探索在本篇文章中开发区域检测工具的过程。