有关MQL5交易系统自动化的文章

icon

阅读 交易系统 文章,拓宽核心思路。了解如何使用蜡烛条图表的统计方法和形态,如何过滤信号以及何处使用信号机指标。

该 MQL5 向导将帮助您 创建无需编程的机器人 以便快速检验您的交易思路。使用向导来学习有关的 遗传算法

添加一个新的文章
最近 | 最佳
preview
神经网络变得简单(第 78 部分):带有变换器的无解码对象检测器(DFFT)

神经网络变得简单(第 78 部分):带有变换器的无解码对象检测器(DFFT)

在本文中,我提议从不同的角度看待构建交易策略的问题。我们不会预测未来的价格走势,但会尝试基于历史数据分析构建交易系统。
preview
创建一个基于日波动区间突破策略的 MQL5 EA

创建一个基于日波动区间突破策略的 MQL5 EA

在本文中,我们将创建一个基于日波动区间突破策略的 MQL5 EA。我们阐述该策略的关键概念,设计EA框架蓝图,并在 MQL5 语言中实现突破策略逻辑。最后,我们将探讨用于回测和优化EA的技术,以最大限度地提高其有效性。
preview
MQL5自动化交易策略(第二部分):基于一目均衡表与动量震荡器的云突破交易系统

MQL5自动化交易策略(第二部分):基于一目均衡表与动量震荡器的云突破交易系统

在本文中,我们将创建一个智能交易系统(EA),利用一目均衡表指标与动量震荡器,实现云图突破策略的自动化交易。我们将逐步解析以下核心流程:指标句柄初始化、突破条件检测和自动化交易执行。此外,我们还实现追踪止损机制与动态仓位管理,以提升EA的盈利能力及对市场波动的适应性。
preview
基于LSTM的趋势预测在趋势跟踪策略中的应用

基于LSTM的趋势预测在趋势跟踪策略中的应用

长短期记忆网络(LSTM)是一种特殊的循环神经网络(RNN),其设计初衷是通过有效捕捉数据中的长期依赖关系,并解决传统RNN存在的梯度消失问题,从而实现对时序数据的高效建模。本文将系统阐述如何利用LSTM进行未来趋势预测,进而提升趋势跟踪策略的实战表现。具体内容涵盖这些模块:LSTM关键概念介绍与发展契机、从MetaTrader 5平台提取数据、在Python中构建并训练模型、将机器学习模型嵌入MQL5中、基于统计回测的结果分析与改进方向。
preview
神经网络变得轻松(第五十五部分):对比内在控制(CIC)

神经网络变得轻松(第五十五部分):对比内在控制(CIC)

对比训练是一种无监督训练方法表象。它的目标是训练一个模型,突显数据集中的相似性和差异性。在本文中,我们将谈论使用对比训练方式来探索不同的扮演者技能。
preview
MQL5 中的范畴论 (第 16 部分):多层感知器函子

MQL5 中的范畴论 (第 16 部分):多层感知器函子

本文是我们系列文章的第 16 篇,继续考察函子以及如何使用人工神经网络实现它们。我们偏离了迄今为止在该系列中所采用的方式,这涉及预测波动率,并尝试实现自定义信号类来设置入仓和出仓信号。
preview
重构经典策略(第十三部分):最小化均线交叉的滞后性

重构经典策略(第十三部分):最小化均线交叉的滞后性

在我们交易者社区中,均线交叉策略已是广为人知,然而,自该策略诞生以来,其核心思想却几乎一成未变。在本次讨论中,我们将为您呈现对原策略的一项微调,其目的在于最小化该交易策略中存在的滞后性。所有原策略的爱好者们,不妨根据我们今天将要探讨的见解,来重新审视并改进这一策略。通过使用两条周期相同的移动平均线,我们可以在不违背策略基本原则的前提下,显著减少交易策略的滞后。
preview
您应当知道的 MQL5 向导技术(第 35 部分):支持向量回归

您应当知道的 MQL5 向导技术(第 35 部分):支持向量回归

支持向量回归是一种理想主义的途径,寻找最能描述两组数据之间关系的函数或“超平面”。我们尝试在 MQL5 向导的自定义类内利用这一点来进行时间序列预测。
preview
MQL5 中的组合对称交叉验证

MQL5 中的组合对称交叉验证

在本文中,我们介绍使用纯 MQL5 语言实现组合对称交叉验证的情况,以衡量使用策略测试器的慢速完全算法优化策略后可能出现的过拟合程度。
preview
开发基于订单簿的交易系统(第一部分):指标

开发基于订单簿的交易系统(第一部分):指标

市场深度无疑是执行快速交易的一个非常重要的因素,特别是在高频交易(HFT)算法中。在本系列文章中,我们将探讨这种类型的交易事件,这些事件可以通过经纪商在许多可交易的交易品种上获得。我们将从一个指标开始,您可以在其中自定义直接显示在图表上的直方图的调色板、位置和大小。我们还将研究如何生成 BookEvent 事件,以在特定条件下测试指标。未来文章的其他可能主题包括如何存储价格分布数据以及如何在策略测试器中使用它。
preview
大爆炸-大坍缩(BBBC)算法

大爆炸-大坍缩(BBBC)算法

本文介绍了大爆炸-大坍缩方法,该方法包含两个关键阶段:随机点的循环生成,以及将这些点压缩至最优解。该方法结合了探索与精炼过程,使我们能够逐步找到更优的解,并开拓新的优化可能性。
preview
群体优化算法:抵抗陷入局部极值(第二部分)

群体优化算法:抵抗陷入局部极值(第二部分)

我们将继续我们的实验,它的目标是研究群体优化算法在群体多样性较低时有效摆脱局部最小值并达到全局最大值的能力。提供了研究的结果。
preview
神经网络变得简单(第 69 部分):基于密度的行为政策支持约束(SPOT)

神经网络变得简单(第 69 部分):基于密度的行为政策支持约束(SPOT)

在离线学习中,我们使用固定的数据集,这限制了环境多样性的覆盖范围。在学习过程中,我们的 Agent 能生成超出该数据集之外的动作。如果没有来自环境的反馈,我们如何判定针对该动作的估测是正确的?在训练数据集中维护 Agent 的政策成为确保训练可靠性的一个重要方面。这就是我们将在本文中讨论的内容。
preview
交易中的神经网络:多智代自适应模型(MASA)

交易中的神经网络:多智代自适应模型(MASA)

我邀您领略多智代自适应(MASA)框架,其结合了强化学习和自适应策略,在动荡市场条件下提供盈利能力、及风险管理之间的和谐均衡。
preview
开发回放系统 — 市场模拟(第 28 部分):智能交易系统项目 — C_Mouse 类 (II)

开发回放系统 — 市场模拟(第 28 部分):智能交易系统项目 — C_Mouse 类 (II)

当人们开始创建第一个拥有计算能力的系统时,一切都需要工程师的参与,他们必须非常熟知该项目。我们谈论的是计算机技术的曙光,那个时代甚至没有用于编程的终端。随着它的发展,越来越多的人对能够创造一些东西感兴趣,涌现出新的思路和编程方式,取代了旧式风格的改变连接器位置。这就是第一个终端出现的时刻。
preview
可视化交易图表(第二部分):数据图形化展示

可视化交易图表(第二部分):数据图形化展示

接下来,我们将从头开始编写一个脚本,以简化交易订单截图的加载过程,便于分析交易入场点。所有关于单个交易的必要信息都将方便地显示在一个图表上,并且该图表具备绘制不同时间框架的能力。
preview
开发回放系统 — 市场模拟(第 26 部分):智能交易系统项目 — C_Terminal 类

开发回放系统 — 市场模拟(第 26 部分):智能交易系统项目 — C_Terminal 类

现在,我们可以开始创建回放/模拟系统的智能系统。不过,我们需要改进一些东西,并非敷衍了事。尽管如此,我们不应被最初的复杂性所吓倒。重要的是从某处开始,否则我们最终只会空想一项任务的难度,甚至没有尝试去克服它。这就是编程的全部意义:通过学习、测试和广泛的研究来攻克障碍。
preview
化学反应优化(CRO)算法(第一部分):在优化中处理化学

化学反应优化(CRO)算法(第一部分):在优化中处理化学

在本文的第一部分中,我们将深入化学反应的世界并发现一种新的优化方法!化学反应优化 (CRO,Chemical reaction optimization) 利用热力学定律得出的原理来实现有效的结果。我们将揭示分解、合成和其他化学过程的秘密,这些秘密成为了这种创新方法的基础。
preview
MQL5自动化交易策略(第四部分):构建多层级区域恢复系统

MQL5自动化交易策略(第四部分):构建多层级区域恢复系统

本文将介绍如何在MQL5中开发一个基于相对强弱指数(RSI)生成交易信号的多层级区域恢复(反转)系统(Multi-Level Zone Recovery System)。该系统通过动态数组结构管理多个信号实例,使区域恢复逻辑能够同时处理多重交易信号。通过这种设计,我们展示了如何在保持代码可扩展性和健壮性的前提下,有效应对复杂的交易管理场景。
preview
开发多币种 EA 交易 (第 10 部分):从字符串创建对象

开发多币种 EA 交易 (第 10 部分):从字符串创建对象

EA 开发计划包括几个阶段,中间结果保存在数据库中,它们只能作为字符串或数字而不是对象再次从那里读取。因此,我们需要一种方法来根据从数据库读取的字符串重新创建 EA 中的所需对象。
preview
您应当知道的 MQL5 向导技术(第 28 部分):据入门学习率重新审视 GAN

您应当知道的 MQL5 向导技术(第 28 部分):据入门学习率重新审视 GAN

学习率是许多机器学习算法在训练过程期间,朝向训练目标迈进的步长。我们检验了其众多调度和格式对于生成式对抗网络性能的影响,该神经网络类型我们在早前文章中已检验过。
preview
交易中的神经网络:运用形态变换器进行市场分析

交易中的神经网络:运用形态变换器进行市场分析

当我们用模型分析市场形势时,我们主要关注蜡烛条。然而,人们早就知道烛条形态能有助于预测未来的价格走势。在本文中,我们将领略一种能将这两种方法集成的方式。
preview
MQL5 中的范畴论 (第 11 部分):图论

MQL5 中的范畴论 (第 11 部分):图论

本文是以 MQL5 实现范畴论系列的续篇。于此,我们验证在开发交易系统的平仓策略时,图论如何与幺半群和其它数据结构集成。
preview
数据科学与机器学习(第 15 部分):SVM,每个交易员工具箱中的必备工具

数据科学与机器学习(第 15 部分):SVM,每个交易员工具箱中的必备工具

探索支持向量机 (SVM,Support Vector Machines) 在塑造未来交易中不可或缺的作用。本综合指南探讨了 SVM 如何提升您的交易策略,增强决策能力,并在金融市场中释放新的机会。通过实际应用、分步教程和专家见解深入了解 SVM 的世界。为自己配备必要的工具,帮助您应对现代交易的复杂性。使用 SVM 提升您的交易能力 — 这是每个交易者工具箱中的必备工具。
preview
神经网络变得简单(第 84 部分):可逆归一化(RevIN)

神经网络变得简单(第 84 部分):可逆归一化(RevIN)

我们已经知晓,输入数据的预处理对于模型训练的稳定性扮演重要角色。为了在线处理 “原始” 输入数据,我们往往会用到批量归一化层。但有时我们需要一个逆过程。在本文中,我们将讨论解决该问题的可能方式之一。
preview
开发多币种 EA 交易(第 12 部分):开发自营交易级别风险管理器

开发多币种 EA 交易(第 12 部分):开发自营交易级别风险管理器

在正在开发的 EA 中,我们已经有了某种控制回撤的机制。但它具有概率性,因为它是以历史价格数据的测试结果为基础的。因此,回撤有时会超过最大预期值(尽管概率很小)。让我们试着增加一种机制,以确保遵守指定的回撤水平。
preview
构建K线图趋势约束模型(第六部分):一体化集成

构建K线图趋势约束模型(第六部分):一体化集成

我们的一个主要挑战是:如何管理运行相同程序但具有不同功能的同一货币对的多个图表窗口。让我们讨论一下如何将多个窗口集成整合到一个主程序中。此外,我们还将分享如何配置程序以将信息打印到日志中,以及在图表界面上对成功发出的信号进行注释的见解。随着本系列文章的推进,您将在本文中找到更多的相关信息。
preview
如何构建并优化基于成交量的交易系统——蔡金资金流指标(Chaikin Money Flow - CMF)

如何构建并优化基于成交量的交易系统——蔡金资金流指标(Chaikin Money Flow - CMF)

在本文中,我们将在明确如何构建、计算和使用基于成交量的指标——蔡金资金流指标(Chaikin Money Flow,CMF)之后,对该指标进行介绍。我们将了解如何构建自定义指标。我们会分享一些可用的简单策略,然后对这些策略进行测试,以了解哪种策略更优。
preview
神经网络变得简单(第 57 部分):随机边际扮演者-评论者(SMAC)

神经网络变得简单(第 57 部分):随机边际扮演者-评论者(SMAC)

在此,我将研究相当新颖的随机边际扮演者-评论者(SMAC)算法,该算法允许在熵值最大化的框架内构建潜在变量政策。
preview
您应当知道的 MQL5 向导技术(第 46 部分):Ichimoku

您应当知道的 MQL5 向导技术(第 46 部分):Ichimoku

Ichimuko Kinko Hyo 是日本著名的指标,可当作趋势识别系统。我们如之前类似文章所为,逐个形态地验证这一点,并借助 MQL5 向导的库类并汇编,来评估其策略和测试报告。
preview
开发回放系统(第 41 部分):启动第二阶段(二)

开发回放系统(第 41 部分):启动第二阶段(二)

如果到目前为止,你觉得一切都很好,那就说明你在开始开发应用程序时,并没有真正考虑到长远的问题。随着时间的推移,你将不再需要为新的应用程序编程,只需让它们协同工作即可。让我们看看如何完成鼠标指标的组装。
preview
开发回放系统(第 45 部分):Chart Trade 项目(四)

开发回放系统(第 45 部分):Chart Trade 项目(四)

本文的主要目的是介绍和解释 C_ChartFloatingRAD 类。我们有一个 Chart Trade 指标,它的工作方式非常有趣。您可能已经注意到了,图表上的对象数量仍然很少,但我们却获得了预期的功能。指标中的数值是可以编辑的。问题是,这怎么可能呢?这篇文章将使答案变得更加清晰。
preview
将您自己的 LLM 集成到 EA 中(第 5 部分):使用 LLM 开发和测试交易策略(三)—— 适配器微调

将您自己的 LLM 集成到 EA 中(第 5 部分):使用 LLM 开发和测试交易策略(三)—— 适配器微调

随着当今人工智能的快速发展,语言模型(LLMs)是人工智能的重要组成部分,因此我们应该考虑如何将强大的 LLMs 整合到我们的算法交易中。对于大多数人来说,很难根据他们的需求微调这些强大的模型,在本地部署它们,然后将它们应用于算法交易。本系列文章将采取循序渐进的方法来实现这一目标。
preview
价格行为分析工具包开发(第 17 部分):TrendLoom EA 工具

价格行为分析工具包开发(第 17 部分):TrendLoom EA 工具

作为一名价格行为的观察者和交易者,我注意到当一个趋势得到多个时间周期的确认时,它通常会朝着该方向延续。可能不同的是趋势持续的时间,而这取决于您是哪种类型的交易者,无论是长期持仓还是从事剥头皮交易。您为确认所选的时间周期起着至关重要的作用。读这篇文章,了解一个快速、自动化的系统,只需点击一下按钮或通过定期更新,就能帮助您分析不同时间周期的整体趋势。
preview
神经网络变得简单(第 94 部分):优化输入序列

神经网络变得简单(第 94 部分):优化输入序列

在处理时间序列时,我们始终按其历史序列使用源数据。但这是最好的选项吗?有一种观点认为,改变输入数据顺序将提高训练模型的效率。在本文中,我邀请您领略其中一种优化输入序列的方法。
preview
您应当知道的 MQL5 向导技术(第 40 部分):抛物线止损和反转(PSAR)

您应当知道的 MQL5 向导技术(第 40 部分):抛物线止损和反转(PSAR)

抛物线止损和反转(PSAR) 是趋势确认、和趋势终结点的指标。因为它在识别趋势方面滞后,所以它的主要目的是为持仓定位尾随止损。然而,我们要探索它是否真的可以当作智能系统的交易信号,这要归功于由向导汇编智能系统的自定义信号类。
preview
构建蜡烛图趋势约束模型(第7部分):为EA开发优化我们的模型

构建蜡烛图趋势约束模型(第7部分):为EA开发优化我们的模型

在本文中,我们将详细探讨为开发专家顾问(EA)所准备的指标的相关内容。我们不仅会讨论如何对当前版本的指标进行进一步改进,以提升其准确性和功能,还会引入全新的功能来标记退出点,以弥补之前版本仅具备识别入场点功能的不足。
preview
算术优化算法(AOA):从AOA到SOA(简单优化算法)

算术优化算法(AOA):从AOA到SOA(简单优化算法)

在本文中,我们介绍了基于简单算术运算(加法、减法、乘法和除法)的算术优化算法(AOA)。这些基本的数学运算是为各种问题寻找最优解的基础。
preview
S&P 500交易策略在MQL5中的实现(适合初学者)

S&P 500交易策略在MQL5中的实现(适合初学者)

了解如何利用MQL5精准预测标普500指数,结合经典技术分析以增强稳定性,并将算法与经过时间验证的原则相结合,以获得稳健的市场洞察。
preview
使用MQL5经济日历进行交易(第二部分):创建新闻交易面板

使用MQL5经济日历进行交易(第二部分):创建新闻交易面板

在本文中,我们使用MQL5经济日历创建了一个实用的新闻交易面板,来增强我们的交易策略。我们首先设计布局,重点关注事件名称、重要性和时间等关键元素,然后在MQL5中进行设置。最后,我们实现了一个过滤系统,只显示相关性最强的新闻,为交易者快速提供有影响力的经济事件。