有关MQL5交易系统自动化的文章

icon

阅读 交易系统 文章,拓宽核心思路。了解如何使用蜡烛条图表的统计方法和形态,如何过滤信号以及何处使用信号机指标。

该 MQL5 向导将帮助您 创建无需编程的机器人 以便快速检验您的交易思路。使用向导来学习有关的 遗传算法

添加一个新的文章
最近 | 最佳
preview
开发回放系统(第 34 部分):订单系统 (三)

开发回放系统(第 34 部分):订单系统 (三)

在本文中,我们将完成构建的第一阶段。虽然这部分内容很快就能完成,但我将介绍之前没有讨论过的细节。我将解释一些许多人不理解的问题。你知道为什么要按 Shift 或 Ctrl 键吗?
preview
神经网络变得简单(第 95 部分):降低变换器模型中的内存消耗

神经网络变得简单(第 95 部分):降低变换器模型中的内存消耗

基于变换器架构的模型展现出高效率,但由于在训练阶段、及运行期间都资源成本高昂,故它们的使用变得复杂。在本文中,我提议领略那些能够降低此类模型内存占用的算法。
preview
您应当知道的 MQL5 向导技术(第 12 部分):牛顿多项式

您应当知道的 MQL5 向导技术(第 12 部分):牛顿多项式

牛顿多项式,其依据一组少量点创建二次方程,是一种古老但有趣的时间序列观察方式。在本文中,我们尝试探讨这种方式在哪些方面对交易者有用,并解决其局限性。
preview
使用图表可视化交易(第一部分):选择分析时段

使用图表可视化交易(第一部分):选择分析时段

在这里,我们将从头开始编写一个脚本,以简化卸载交易截图用于分析交易入场点的过程。能够方便地将所有关于单个交易的必要信息展示在一个图表上,并且该图表可以根据不同时间周期绘制。
preview
开发回放系统(第 51 部分):事情变得复杂(三)

开发回放系统(第 51 部分):事情变得复杂(三)

在本文中,我们将研究 MQL5 编程领域最困难的问题之一:如何正确获取图表 ID,以及为什么对象有时不会绘制在图表上。此处提供的材料仅用于教学目的,在任何情况下,除了学习和掌握所提出的概念外,都不应出于任何目的使用此应用程序。
preview
神经网络变得简单(第 81 部分):上下文引导运动分析(CCMR)

神经网络变得简单(第 81 部分):上下文引导运动分析(CCMR)

在以前的工作中,我们总是评估环境的当前状态。与此同时,指标变化的动态始终保持在“幕后”。在本文中,我打算向您介绍一种算法,其允许您评估 2 个连续环境状态数据之间的直接变化。
preview
开发回放系统(第 48 部分):了解服务的概念

开发回放系统(第 48 部分):了解服务的概念

学习些新知识怎么样?在本文中,您将了解如何将脚本转换为服务,以及为什么这样做很有用。
preview
数据科学与机器学习(第 20 部分):算法交易洞察,MQL5 中 LDA 与 PCA 之间的较量

数据科学与机器学习(第 20 部分):算法交易洞察,MQL5 中 LDA 与 PCA 之间的较量

在剖析 MQL5 交易环境中这些强大的降维技术的应用程序时,让我们揭示它们背后的秘密。深入探讨线性判别分析(LDA)和主成分分析(PCA)的细微差别,深入了解它们对策略开发和市场分析的影响。
preview
开发回放系统(第 57 部分):了解测试服务

开发回放系统(第 57 部分):了解测试服务

需要注意的一点是:虽然服务代码没有包含在本文中,只会在下一篇文章中提供,但我会解释一下,因为我们将使用相同的代码作为我们实际开发的跳板。因此,请保持专注和耐心。等待下一篇文章,因为每一天都变得更加有趣。
preview
大气云模型优化(ACMO):理论

大气云模型优化(ACMO):理论

本文致力于介绍一种元启发式算法——大气云模型优化(ACMO)算法,该算法通过模拟云层的行为来解决优化问题。该算法利用云层的生成、移动和传播的原理,适应解空间中的“天气条件”。本文揭示了该算法如何通过气象模拟在复杂的可能性空间中找到最优解,并详细描述了ACMO运行的各个阶段,包括“天空”准备、云层的生成、云层的移动以及水的集中。
preview
您应当知道的 MQL5 向导技术(第 19 部分):贝叶斯(Bayesian)推理

您应当知道的 MQL5 向导技术(第 19 部分):贝叶斯(Bayesian)推理

贝叶斯(Bayesian)推理是运用贝叶斯定理,在获得新信息时更新概率假设。这在直观上倾向于时间序列分析中的适应性,那么我们来看看如何运用它来构建自定义类,不仅针对信号,还有资金管理、和尾随破位。
preview
构建K线图趋势约束模型(第5部分):通知系统(第二部分)

构建K线图趋势约束模型(第5部分):通知系统(第二部分)

今天,我们将讨论如何使用MQL5与Python和Telegram Bot API相结合,为MetaTrader 5的指标通知集成一个实用的Telegram应用。我们将详细解释所有内容,确保每个人都不会错过任何要点。完成这个项目后,您将获得宝贵的见解,可以在自己的项目中加以应用。
preview
神经网络变得简单(第 86 部分):U-形变换器

神经网络变得简单(第 86 部分):U-形变换器

我们继续研究时间序列预测算法。在本文中,我们将讨论另一种方法:U-形变换器。
preview
开发回放系统(第 61 部分):玩转服务(二)

开发回放系统(第 61 部分):玩转服务(二)

在本文中,我们将研究使回放/模拟系统更高效、更安全地运行的修改。我也不会对那些想要充分利用这些类的人置之不理。此外,我们将探讨 MQL5 中的一个特定问题,即在使用类时降低代码性能,并解释如何解决它。
preview
开发回放系统(第 42 部分):图表交易项目(I)

开发回放系统(第 42 部分):图表交易项目(I)

我们来创建一些更有趣的东西。我不想毁掉惊喜,故此紧随本文以便更好地理解。自本系列开发回放/模拟器系统的最开始,我就一直说,我们的意图是按相同的方式使用 MetaTrader 5 平台,无论正在开发的系统中,亦或真实市场中。重点是要正确完成。没有人愿意在训练和学习时用一种工具,而在战斗时不得不换另一种工具。
preview
交易中的神经网络:时间序列的分段线性表示

交易中的神经网络:时间序列的分段线性表示

这篇文章与我以前发表的有些不同。在本文中,我们将谈谈时间序列的另类表示。时间序列的分段线性表示是一种利用涵盖小间隔的线性函数逼近时间序列的方法。
preview
让新闻交易轻松上手(第二部分):风险管理

让新闻交易轻松上手(第二部分):风险管理

在本文,我们将把继承引入到我们之前的代码和新代码中。我们将引入一种新的数据库设计以提高效率。此外,还将创建一个风险管理类来处理容量计算。
preview
您应当知道的 MQL5 向导技术(第 14 部分):以 STF 进行多意向时间序列预测

您应当知道的 MQL5 向导技术(第 14 部分):以 STF 进行多意向时间序列预测

“时空融合”就是在数据建模中同时使用“空间”和“时间”度量值,主要用在遥感,和一系列其它基于视觉的活动,以便更好地了解我们的周边环境。归功于一篇已发表的论文,我们通过验证它对交易者的潜力,采取一种新颖的方式来运用它。
preview
您应当知道的 MQL5 向导技术(第 29 部分):继续学习率与 MLP

您应当知道的 MQL5 向导技术(第 29 部分):继续学习率与 MLP

我们主要验证自适应学习率,圆满考察学习率对智能系统性能的敏感性。这些学习率旨在在训练过程中针对层中的每个参数进行自定义,故我们评估潜在收益相较于预期的性能损失。
preview
您应当知道的 MQL5 向导技术(第 30 部分):聚焦机器学习中的批量归一化

您应当知道的 MQL5 向导技术(第 30 部分):聚焦机器学习中的批量归一化

批量归一化是把数据投喂给机器学习算法(如神经网络)之前对数据进行预处理。始终要留意算法所用的激活类型,完成该操作。因此,我们探索在向导组装的智能系统帮助下,能够采取的不同方式,并从中受益。
preview
神经网络变得简单(第 91 部分):频域预测(FreDF)

神经网络变得简单(第 91 部分):频域预测(FreDF)

我们继续探索时间序列在频域中的分析和预测。在本文中,我们将领略一种在频域中预测数据的新方法,它可被加到我们之前研究过的众多算法当中。
preview
您应当知道的 MQL5 向导技术(第 20 部分):符号回归

您应当知道的 MQL5 向导技术(第 20 部分):符号回归

符号回归是一种回归形式,它从最小、甚或没有假设开始,而底层模型看起来应当映射所研究数据集。尽管它可以通过贝叶斯(Bayesian)方法、或神经网络来实现,但我们看看如何使用遗传算法实现,从而有助于在 MQL5 向导中使用自定义的智能信号类。
preview
开发回放系统(第 50 部分):事情变得复杂 (二)

开发回放系统(第 50 部分):事情变得复杂 (二)

我们将解决图表 ID 问题,同时开始为用户提供使用个人模板对所需资产进行分析和模拟的能力。此处提供的材料仅用于教学目的,不应被视为除学习和掌握所提供概念以外的任何目的的应用。
preview
开发回放系统(第 54 部分):第一个模块的诞生

开发回放系统(第 54 部分):第一个模块的诞生

在本文中,我们将探讨如何将多个真正功能模块中的第一个组合在一起,用于回放/模拟器系统,这些模块也将用于其他用途。我们现在说的是鼠标模块。
preview
开发回放系统(第 47 部分):Chart Trade 项目(六)

开发回放系统(第 47 部分):Chart Trade 项目(六)

最后,我们的 Chart Trade 指标开始与 EA 互动,以交互方式传输信息。因此,在本文中,我们将对该指标进行改进,使其功能足以与任何 EA 配合使用。这样,我们就可以访问 Chart Trade 指标,并像实际连接 EA 一样使用它。不过,我们将以比以前更有趣的方式来实现这一目标。
preview
神经网络变得简单(第 87 部分):时间序列补片化

神经网络变得简单(第 87 部分):时间序列补片化

预测在时间序列分析中扮演重要角色。在新文章中,我们将谈谈时间序列补片化的益处。
preview
神经网络变得简单(第 82 部分):常微分方程模型(NeuralODE)

神经网络变得简单(第 82 部分):常微分方程模型(NeuralODE)

在本文中,我们将讨论另一种模型类型,它们旨在研究环境状态的动态。
preview
交易中的神经网络:通过Adam-mini优化减少内存消耗

交易中的神经网络:通过Adam-mini优化减少内存消耗

提高模型训练和收敛效率的一个方向是改进优化方法。Adam-mini是一种自适应优化方法,旨在改进基础的Adam算法。
preview
在MQL5中创建交易管理员面板(第二部分):增强响应性和快速消息传递

在MQL5中创建交易管理员面板(第二部分):增强响应性和快速消息传递

在本文中,我们将增强之前创建过的管理面板的响应性。此外,我们还将探讨在交易信号背景下快速消息传递的重要性。
preview
神经网络变得简单(第 79 部分):在状态上下文中的特征聚合查询(FAQ)

神经网络变得简单(第 79 部分):在状态上下文中的特征聚合查询(FAQ)

在上一篇文章中,我们领略了一种从图像中检测对象的方法。不过,处理静态图像与处理动态时间序列(例如我们所分析的价格动态)有些不同。在本文中,我们将研究检测视频中对象的方法,其可在某种程度上更接近我们正在解决的问题。
preview
使用Python和MQL5进行多交易品种分析(第一部分):纳斯达克集成电路制造商

使用Python和MQL5进行多交易品种分析(第一部分):纳斯达克集成电路制造商

加入我们的讨论,了解如何利用人工智能(AI)优化您的仓位规模和订单数量,以最大化您的投资组合回报。我们将展示如何通过算法识别一个最优的投资组合,并根据您的回报预期或风险承受能力来调整投资组合。在本次讨论中,我们将使用SciPy库和MQL5语言,利用所拥有的全部数据创建一个最优且多样化的投资组合。
preview
神经网络变得简单(第 88 部分):时间序列密集编码器(TiDE)

神经网络变得简单(第 88 部分):时间序列密集编码器(TiDE)

为尝试获得最准确的预测,研究人员经常把预测模型复杂化。而反过来又会导致模型训练和维护成本增加。这样的增长总是公正的吗?本文阐述了一种算法,即利用线性模型的简单性和速度,并演示其结果与拥有更复杂架构的最佳模型相当。
preview
您应当知道的 MQL5 向导技术(第 15 部分):协同牛顿多项式的支持向量机

您应当知道的 MQL5 向导技术(第 15 部分):协同牛顿多项式的支持向量机

支持向量机基于预定义的类,按探索增加数据维度的效果进行数据分类。这是一种监督学习方法,鉴于其与多维数据打交道的潜力,它相当复杂。至于本文,我们会研究进行价格行为分类时,如何运用牛顿多项式更有效地做到非常基本的 2-维数据实现。
preview
开发回放系统(第 55 部分):控制模块

开发回放系统(第 55 部分):控制模块

在本文中,我们将实现一个控制指标,以便它可以集成到我们正在开发的消息系统中。虽然这并不难,但关于这个模块的初始化,有一些细节需要了解。此处提供的材料仅用于教育目的。除了学习和掌握所示的概念外,绝不应将其视为任何目的的应用程序。
preview
构建蜡烛图趋势约束模型(第8部分):EA开发(II)

构建蜡烛图趋势约束模型(第8部分):EA开发(II)

构思一个独立的EA。之前,我们讨论了一个基于指标的EA,它还与一个独立脚本配合,用于绘制风险与收益图形。今天,我们将讨论一个整合了所有功能的MQL5 EA的架构。
preview
随机优化和最优控制示例

随机优化和最优控制示例

这款名为SMOC(可能代表随机模型最优控制)的EA,是MetaTrader 5平台上一个较为先进的算法交易系统的简单示例。它结合了技术指标、模型预测控制以及动态风险管理来做出交易决策。该EA融入了自适应参数、基于波动率的仓位规模调整以及趋势分析,以优化其在不同市场条件下的表现。
preview
神经网络变得简单(第 83 部分):“构象”时空连续关注度转换器算法

神经网络变得简单(第 83 部分):“构象”时空连续关注度转换器算法

本文介绍了最初是为天气预报而开发的“构象(Conformer)”算法,其变化多端之处可与金融市场相提并论。“构象(Conformer)”是一种复杂的方法。它结合了关注度模型和常微分方程的优点。
preview
您应当知道的 MQL5 向导技术(第 34 部分):采用非常规 RBM 进行价格嵌入

您应当知道的 MQL5 向导技术(第 34 部分):采用非常规 RBM 进行价格嵌入

受限玻尔兹曼(Boltzmann)机是一种神经网络形式,开发于 1980 年代中叶,当时的计算资源非常昂贵。在其初创时,它依赖于 Gibbs 采样,以及对比散度来降低维度,或捕获输入训练数据集上的隐藏概率/属性。我们验证当 RBM 为预测多层感知器“嵌入”价格时,反向传播如何执行类似的操作。
preview
将 MQL5 与数据处理包集成 (第 2 部分):机器学习和预测分析

将 MQL5 与数据处理包集成 (第 2 部分):机器学习和预测分析

在我们关于将 MQL5 与数据处理包集成的系列文章中,我们深入研究了机器学习和预测分析的强大组合。我们将探索如何将 MQL5 与流行的机器学习库无缝连接,以便为金融市场提供复杂的预测模型。
preview
交易中的神经网络:层次化向量变换器(HiVT)

交易中的神经网络:层次化向量变换器(HiVT)

我们邀请您来领略层次化矢量转换器(HiVT)方法,其专为快速、准确地预测多模态时间序列而开发。